Abstract:
Described herein is an asynchronous serial dichotomic sense amplifier comprising a first comparator stage having a first input receiving the cell current flowing in the multilevel memory cell, the content of which is to be read, a second input receiving a first reference current, and an output supplying the first of the bits stored in the multilevel memory cell; a multiplexer stage having a selection input connected to the output of the first comparator stage, a first signal input receiving a second reference current, a second signal input receiving a third reference current, and a signal output selectively connectable to the first or the second signal input depending on the logic level present on the selection input; and a second comparator stage having a first input receiving the cell current, a second input connected to the signal output of the multiplexer stage, and an output supplying the second of the bits stored in the multilevel memory cell.
Abstract:
According to the multilevel programming method, each memory location can be programmed at a non-binary number of levels. The bits to be stored in the two locations are divided into two sets, wherein the first set defines a number of levels higher than the non-binary number of levels. During programming, if the first set of bits to be written corresponds to a number smaller than the non-binary number of levels, the first set of bits is written in the first location and the second set of bits is written in the second location; ifit is greater than the non-binary number of levels, the first set of bits is written in the second location and the second set of bits is written in the first location. The bits of the first set in the second location are stored in different levels with respect to the bits of the second set.
Abstract:
A non-volatile memory matrix architecture, having a virtual ground monolithically integrated on a semiconductor substrate, includes a plurality of memory cells organized into matrix blocks. The matrix blocks are placed on rows and columns and are associated with respective row and column decoding circuits. The memory blocks are separated from each other by at least one insulation stripe which is parallel to the columns. The non-volatile memory matrix architecture further includes a pass-transistor decoding circuit with a number of levels corresponding to the number of rows to select.
Abstract:
A nonvolatile memory with a memory array arranged in rows and columns of memory cells in NOR configuration, the memory cells arranged on a same column being connected to one of a plurality of bit lines and a column decoder. The column decoder comprises a plurality of selection stages, each of which is connected to respective bit lines and receives first bit line addressing signals. The selection stages comprise word programming selectors controlled by the first bit line addressing signals and supplying a programming voltage to only one of the bit lines of each selection stage. Each selection stage moreover comprises a string programming selection circuit controlled by second bit line addressing signals thereby simultaneously supplying the programming voltage to a plurality of the bit lines of each selection stage.
Abstract:
An adjustable frequency oscillator circuit includes: an odd number of inverters connected so as to form a loop; a plurality of capacitive elements each connected to an output terminal of a respective inverter; and an output terminal, which supplies a signal oscillating at an oscillating frequency. The oscillator circuit further includes a calibration circuit for calibrating maximum currents which can be delivered by the inverters to the respective capacitive elements.
Abstract:
An integrated circuit for storing data, and for application in a memory card that operates in cooperation with at least one of an external acquisition system and an external processing system includes input/output terminals for receiving the data to be stored, and an electrically programmable non-volatile memory for storing the data in digital format. The memory includes a first terminal for receiving a programming signal for enabling storage of the data, and a second terminal for receiving a reading signal for enabling output of the stored data via the input/output terminals. A memory control circuit is connected to the first and second terminals of the electrically programmable non-volatile memory, and to the input/output terminals for generating programming and reading signals based upon the command signal. The electrically programmable non-volatile memory is erasable by electromagnetic radiation for permitting a non-electrical erasure of the stored data.