Abstract:
A sensor device for an electronic apparatus is provided with: a sensing structure generating a first detection signal; and a dedicated integrated circuit, connected to the sensing structure, detecting, as a function of the first detection signal, a first event associated to the electronic apparatus and generating a first interrupt signal upon detection of the first event. The dedicated integrated circuit detects the first event as a function of a temporal evolution of the first detection signal, and in particular as a function of values assumed by the first detection signal within one or more successive time windows, and of a relation between these values.
Abstract:
An inertial device that is integratable in a portable electronic device includes: an inertial sensor for generating at least one raw acceleration signal in response to accelerations caused by movements of walking and running of a user of the pedometer; and a processing unit, associated to the inertial sensor for counting a number of steps of the user of the pedometer on the basis of the raw acceleration signal. The inertial sensor and the processing unit are both encapsulated within a single package for integrated circuits, which can be coupled to a circuit board of an electronic device and is provided with at least one connection terminal for making the number of steps available to the outside world.
Abstract:
A sensor device for an electronic apparatus is provided with: a sensing structure generating a first detection signal; and a dedicated integrated circuit, connected to the sensing structure, detecting, as a function of the first detection signal, a first event associated to the electronic apparatus and generating a first interrupt signal upon detection of the first event. The dedicated integrated circuit detects the first event as a function of a temporal evolution of the first detection signal, and in particular as a function of values assumed by the first detection signal within one or more successive time windows, and of a relation between these values.
Abstract:
A manual pointing device for a computer system, the device having at least one key that can be actuated manually by a user, a click-event detection module coupled to the key to detect actuation thereof on first, second, and third detection axes via an inertial sensing circuit elastically coupled to a casing with a board, the inertial-sensor circuit structured to be carried on the board so as to oscillate and to rotate about the second detection axis.
Abstract:
A manual pointing device for a computer system, the device having at least one key that can be actuated manually by a user, a click-event detection module coupled to the key to detect actuation thereof on first, second, and third detection axes via an inertial sensing circuit elastically coupled to a casing with a board, the inertial-sensor circuit structured to be carried on the board so as to oscillate and to rotate about the second detection axis.
Abstract:
An inertial device that is integratable in a portable electronic device includes: an inertial sensor for generating at least one raw acceleration signal in response to accelerations caused by movements of walking and running of a user of the pedometer; and a processing unit, associated to the inertial sensor for counting a number of steps of the user of the pedometer on the basis of the raw acceleration signal. The inertial sensor and the processing unit are both encapsulated within a single package for integrated circuits, which can be coupled to a circuit board of an electronic device and is provided with at least one connection terminal for making the number of steps available to the outside world.
Abstract:
A sensor device for an electronic apparatus, is provided with: a sensing structure generating a first detection signal; and a dedicated integrated circuit, connected to the sensing structure, detecting, as a function of the first detection signal, a first event associated to the electronic apparatus and generating a first interrupt signal upon detection of the first event. The dedicated integrated circuit detects the first event as a function of a temporal evolution of the first detection signal, and in particular as a function of values assumed by the first detection signal within one or more successive time windows, and of a relation between these values.
Abstract:
A sensor device for an electronic apparatus, including a sensing structure for generating a first detection signal, and a dedicated integrated circuit connected to the sensing structure for detecting a first event associated with the electronic apparatus and for generating a first interrupt signal upon detection of the first event. The dedicated integrated circuit detects the first event as a function of changes to the first detection signal over time (i.e., temporal evolution), and in particular as a function of values assumed by the first detection signal within one or more successive time windows, and of a relation between these values.
Abstract:
A pico-projector device includes a light source operable to generate a light beam as a function of an image to be generated, a mirror mechanism operable to direct the light beam towards a displaying surface, and a driving circuit that supplies driving signals for controlling movement of the mirror mechanism. The driving circuit includes a compensation stage that receives angular velocity signals from a gyroscopic sensor coupled to the pico-projector device and generates the driving signals as a function of the angular velocity signals, thereby stabilizing the image projected on the displaying surface with respect to undesired movements of the pico-projector device.