Abstract:
An electronic system to discharge a transformer in case of a failure during a charging phase of the transformer. The system includes the transformer having a primary winding with a first terminal connected to a battery voltage and with a second terminal for generating a primary voltage signal, includes a switch serially connected to the primary winding and having a control terminal carrying a control voltage signal for opening or closing the switch and includes an electronic circuit. The electronic circuit further includes a current generator and a voltage clamping.
Abstract:
A method includes generating a control signal for controlling a switch element, and determining at each switching cycle alternation of an ON interval with storage of energy in the inductor element starting from an input voltage, and an OFF interval with transfer of the energy stored in an inductor element into a storage element on which an output voltage is present. The method includes when the inductor current reaches the first threshold value before the end of a first interval, determining the end of the ON interval at the end of the first interval. The method includes following detection of the ON interval having a duration equal to the first interval, the detection being indicative of a possible short-circuit condition at output, determining the OFF interval having a second duration equal to a lengthened interval longer than the first duration.
Abstract:
A control circuit for a voltage source generates a reference signal for a voltage source, wherein the reference signal indicates a requested output voltage to be generated by the voltage source. A digital feed-forward control circuit computes a digital feed-forward regulation value indicative of a requested output voltage by determining a maximum voltage drop at strings of solid-state light sources. A digital feed-back control circuit determines a minimum voltage drop for current regulators/limiters for the strings and determines a digital feed-back correction value as a function of the minimum voltage drop. The control circuit then sets the reference signal after a start-up as a function of the digital feed-forward regulation value and corrects the reference signal as a function of the digital feed-back correction value.