Abstract:
Tray for containing electronic components formed by a bearing body, substantially planar, having a first and a second face. First holding structures extend from the first face of the bearing body and second holding structures extend from the second face of the bearing body. Each second holding structure is aligned with a respective first holding structure in a vertical direction perpendicular to the first and the second faces of the bearing body. Each first holding structure is formed by first protrusions mutually spaced by first spaces and arranged along a first closed line; each second holding structure is formed by second protrusions mutually spaced by second spaces and arranged along a second closed line. Each second protrusion is aligned, in parallel with the vertical direction, with the first spaces and each first protrusion is aligned, in parallel with the vertical direction, with the second spaces.
Abstract:
An embodiment of a device for positioning a miniaturized piece, including: a positioning structure, which forms a first cavity, designed to receive with play the miniaturized piece, and a second cavity communicating with the first cavity; at least one electrical-contact terminal, facing the second cavity and electrically coupleable to an electronic testing device, designed to carry out an electrical test on the miniaturized piece; and an actuator device, which causes a vibration of the positioning structure, the vibration being such that the miniaturized piece translates, in use, towards the second cavity, until it penetrates at least in part into the second cavity.
Abstract:
A method for testing the hermetic seal of a packaged device, which includes: a package that delimits a device chamber; and a transducer device, which is arranged within the device chamber and generates an electrical signal indicating at least one physical quantity external to the package. The testing method includes the steps of: imposing a reference pressure in the device chamber; arranging the packaged device in a testing chamber in which a testing pressure is present, different from the reference pressure; and subsequently detecting possible pressure variations within the device chamber.
Abstract:
A for positioning a miniaturized piece includes a positioning structure that forms a first cavity designed to receive with play the miniaturized piece and a second cavity communicating with the first cavity. At least one electrical-contact terminal is provided facing the second cavity and is electrically coupleable to an electronic testing device designed to carry out an electrical test on the miniaturized piece. An actuator device causes a vibration of the positioning structure such that the vibration translates the miniaturized piece towards the second cavity until it penetrates at least in part into the second cavity.
Abstract:
A for positioning a miniaturized piece includes a positioning structure that forms a first cavity designed to receive with play the miniaturized piece and a second cavity communicating with the first cavity. At least one electrical-contact terminal is provided facing the second cavity and is electrically coupleable to an electronic testing device designed to carry out an electrical test on the miniaturized piece. An actuator device causes a vibration of the positioning structure such that the vibration translates the miniaturized piece towards the second cavity until it penetrates at least in part into the second cavity.