Abstract:
The present disclosure is directed to a microfluidic die having a substrate with an inlet path that is configured to move fluid into the die. The die includes a plurality of heaters formed above the substrate, each heater having a first area, a plurality of chambers formed above the plurality of heaters, and a plurality of nozzles formed above the chambers. Each nozzle having an entrance adjacent to the chamber and an exit adjacent to en external environment, the entrance having a second area, and the second having a third area, the first area being greater than the second area, and the second area being greater than the third area. A ratio of the first area to the third area being greater than 5 to 1.
Abstract:
A MEMS force sensor has: a substrate; a fixed electrode coupled to the substrate; and a mobile electrode suspended above the substrate at the fixed electrode to define a sensing capacitor, the mobile electrode being designed to undergo deformation due to application of a force to be detected. A dielectric material region is set on the fixed electrode and spaced apart by an air gap from the mobile electrode, in resting conditions. The mobile electrode comes to bear upon the dielectric material region upon application of a minimum detectable value of the force, so that a contact surface between the mobile electrode and the dielectric material region increases, in particular in a substantially linear way, as the force increases.
Abstract:
A MEMS force sensor has: a substrate; a fixed electrode coupled to the substrate; and a mobile electrode suspended above the substrate at the fixed electrode to define a sensing capacitor, the mobile electrode being designed to undergo deformation due to application of a force to be detected. A dielectric material region is set on the fixed electrode and spaced apart by an air gap from the mobile electrode, in resting conditions. The mobile electrode comes to bear upon the dielectric material region upon application of a minimum detectable value of the force, so that a contact surface between the mobile electrode and the dielectric material region increases, in particular in a substantially linear way, as the force increases.
Abstract:
The present disclosure is directed to a microfluidic die that includes a first larger heater and a second smaller heater is a single chamber. The first heater is configured to form a primary bubble that ejects fluid from a nozzle associated with the chamber. The second heater is configured to form a secondary bubble to prevent blow back caused when the primary bubble bursts and ejects fluid from the nozzle. The first and second heater may be coupled to a single input trace and a single ground trace.
Abstract:
A microelectromechanical gyroscope includes: a substrate; a stator sensing structure fixed to the substrate; a first mass elastically constrained to the substrate and movable with respect to the substrate in a first direction; a second mass elastically constrained to the first mass and movable with respect to the first mass in a second direction; and a third mass elastically constrained to the second mass and to the substrate and capacitively coupled to the stator sensing structure, the third mass being movable with respect to the substrate in the second direction and with respect to the second mass in the first direction.
Abstract:
A microelectromechanical gyroscope includes: a substrate; a stator sensing structure fixed to the substrate; a first mass elastically constrained to the substrate and movable with respect to the substrate in a first direction; a second mass elastically constrained to the first mass and movable with respect to the first mass in a second direction; and a third mass elastically constrained to the second mass and to the substrate and capacitively coupled to the stator sensing structure, the third mass being movable with respect to the substrate in the second direction and with respect to the second mass in the first direction.
Abstract:
The present disclosure is directed to a microfluidic die that includes a first larger heater and a second smaller heater is a single chamber. The first heater is configured to form a primary bubble that ejects fluid from a nozzle associated with the chamber. The second heater is configured to form a secondary bubble to prevent blow back caused when the primary bubble bursts and ejects fluid from the nozzle. The first and second heater may be coupled to a single input trace and a single ground trace.
Abstract:
A system for diagnosing the operating state of a MEMS sensor includes a stimulation circuit, external to the MEMS sensor, configured to generate a stimulation signal designed to be detected by the MEMS sensor. The system has control circuitry, operatively coupled to the stimulation circuit and to the MEMS sensor, so as to control the stimulation circuit to generate the stimulation signal and receive a diagnostic signal generated by the MEMS sensor in response to the stimulation signal. The control circuitry determines an operating state of the MEMS sensor based on the diagnostic signal and an expected response to the stimulation signal by the MEMS sensor.
Abstract:
The MEMS gyroscope is formed by a substrate, a first mass and a second mass, wherein the first and the second masses are suspended over the substrate and extend, at rest, in a plane of extension defining a first direction and a second direction transverse to the first direction. The MEMS gyroscope further has a drive structure coupled to the first mass and configured, in use, to cause a movement of the first mass in the first direction, and an elastic coupling structure, which extends between the first mass and the second mass and is configured to couple the movement of the first mass in the first direction with a movement of the second mass in the second direction. The elastic coupling structure has a first portion having a first stiffness and a second portion having a second stiffness greater than the first stiffness.
Abstract:
A microelectromechanical gyroscope includes: a substrate; a stator sensing structure fixed to the substrate; a first mass elastically constrained to the substrate and movable with respect to the substrate in a first direction; a second mass elastically constrained to the first mass and movable with respect to the first mass in a second direction; and a third mass elastically constrained to the second mass and to the substrate and capacitively coupled to the stator sensing structure, the third mass being movable with respect to the substrate in the second direction and with respect to the second mass in the first direction.