摘要:
The present invention provides a device and method for recovering a catalyst for a fuel cell, in which a carbon nanotube filter is provided in an air circulation loop of the fuel cell to recover catalyst particles washed away from a catalyst layer of an air electrode during operation of the fuel cell.
摘要:
The present invention provides a method for bonding a membrane electrode assembly (MEA) and a gas diffusion layer (GDL) of a fuel cell stack, which facilitates stacking of an electrode catalyst layer of the MEA and the GDL and, at the same time, facilitates the keeping of the stacked layers for mass production of the fuel cell stack.For this purpose, the present invention provides a method for bonding a membrane electrode assembly and a gas diffusion layer of a fuel cell stack, the method including: coating a catalyst layer on a surface of a polymer electrolyte membrane; attaching a sub-gasket on the circumference of the polymer electrolyte membrane; and stacking a gas diffusion layer onto an outer surface of the catalyst layer by bonding all or a portion of an outer surface of the sub-gasket and the circumference of the gas diffusion layer with a bonding means.
摘要:
Disclosed is a fuel cell with enhanced mass transfer characteristics in which a highly hydrophobic porous medium, which is prepared by forming a micro-nano dual structure in which nanometer-scale protrusions with a high aspect ratio are formed on the surface of a porous medium with a micrometer-scale roughness by plasma etching and then by depositing a hydrophobic thin film thereon, is used as a gas diffusion layer, thereby increasing hydrophobicity due to the micro-nano dual structure and the hydrophobic thin film. When this highly hydrophobic porous medium is used as a gas diffusion layer for a fuel cell, it is possible to reduce water flooding by efficiently discharging water produced by an electrochemical reaction of the fuel cell and to improve the performance of the fuel cell by facilitating the supply of reactant gases such as hydrogen and air (oxygen) to a membrane-electrode assembly (MEA).
摘要:
Disclosed is a fuel cell with enhanced mass transfer characteristics in which a highly hydrophobic porous medium, which is prepared by forming a micro-nano dual structure in which nanometer-scale protrusions with a high aspect ratio are formed on the surface of a porous medium with a micrometer-scale roughness by plasma etching and then by depositing a hydrophobic thin film thereon, is used as a gas diffusion layer, thereby increasing hydrophobicity due to the micro-nano dual structure and the hydrophobic thin film. When this highly hydrophobic porous medium is used as a gas diffusion layer for a fuel cell, it is possible to reduce water flooding by efficiently discharging water produced by an electrochemical reaction of the fuel cell and to improve the performance of the fuel cell by facilitating the supply of reactant gases such as hydrogen and air (oxygen) to a membrane-electrode assembly (MEA).
摘要:
The present invention provides a fuel cell stack with enhanced freeze-thaw durability. In particular, the fuel cell stack includes a gas diffusion layer between a membrane-electrode assembly and a bipolar plate. The gas diffusion layer has a structure that reduces contact resistance in a fuel cell and is cut at a certain angle such that the machine direction (high stiffness direction) of GDL roll is not in parallel with the major flow field direction of the bipolar plate, resulting in an increased GDL stiffness in a width direction perpendicular to a major flow field direction of a bipolar plate.
摘要:
The present invention provides an apparatus and method for non-destructive measurement of bending stiffness of a gas diffusion layer (GDL) for a fuel cell by measuring a sagging length of a GDL sample, which can be used for a fuel cell, without damaging or destroying the GDL sample.
摘要:
The present invention provides a joining method of a gas diffusion layer and an electrode membrane including a catalyst layer, a polymer electrolyte membrane, and a sub-gasket. In particular, the method provides a way to join the gas diffusion layer with the sub-gasket without hot-pressing the them together by forming a groove at a junction portion of the gas diffusion layer and the sub-gasket and inserting a stopper into this groove which is made of a material which hardens after being formed.
摘要:
A method of clamping a fuel cell stack includes a stack preliminary clamping step, a stack pre-treatment step of performing a gas flow rate variation cycle or a clamping pressure variation cycle, wherein the gas flow rate variation cycle repeatedly changes a flow rate of a gas supplied to an anode and a cathode included in the preliminarily clamped stack, and wherein the clamping pressure variation cycle repeatedly increases and decreases the clamping pressure by pressurization and pressure release of the preliminarily clamped stack using the pressure tool, and a stack main clamping step of correcting a variation in clamping pressure occurring due to a variation in thickness of a gas diffusion layer to mainly clamp the stack after the stack pre-treatment step.
摘要:
The present invention provides a fuel cell stack with improved corrosion resistance, in which the outer edge of the fuel cell stack including an outer cut portion of each metallic bipolar plate can be effectively prevented from being corroded. For this purpose, the present invention provides a fuel cell stack including a waterproof member which is formed at an outer edge of a metallic bipolar plate to seal a gap between joined surfaces of the metallic bipolar plate, a membrane-electrode assembly, a gas diffusion layer, and a gasket from the outside thereof such that water vapor and moisture from the fuel cell stack are prevented from being brought into contact with an outer cut portion of each metallic bipolar plate by the waterproof member.
摘要:
The present invention provides an apparatus and method for non-destructive measurement of bending stiffness of a gas diffusion layer (GDL) for a fuel cell by measuring a sagging length of a GDL sample, which can be used for a fuel cell, without damaging or destroying the GDL sample.