Abstract:
A display device includes a display panel including a plurality of first sensing lines that extend in a first direction, and a plurality of second sensing lines that extend in a second direction, a first position selector and a second position selector at an edge of the display panel, and spaced apart from each other in the first direction, and a third position selector and a fourth position selector at or above the display panel, and spaced apart from each other in the second direction, wherein an activated region of the display panel corresponds to respective positions of the first position selector, the second position selector, the third position selector, and the fourth position selector
Abstract:
An organic light emitting display device includes a first substrate, a thin film transistor disposed on the first substrate, a first electrode electrically coupled to the thin film transistor, a pixel defining layer disposed on the first substrate and the first electrode to define unit pixels, a plurality of organic light emitting structure disposed on the first electrode, where in the organic light emitting structure includes a first organic light emitting structure, a second organic light emitting structure and a third light emitting structure, a second electrode which covers the first through third organic light emitting structures and the pixel defining layer; a metamaterial layer disposed on the second electrode corresponding to the organic light emitting structures, an encapsulation member which covers the second electrode and the metamaterial layer, and a second substrate disposed on the encapsulation member opposite to the first substrate.
Abstract:
In a method and a device for controlling luminance of a display unit to save power of a display device including the display unit for displaying on a screen, the method includes: calculating a second luminance to which the luminance of the display unit is to be changed considering a first luminance that is a current luminance of the display unit and a constant K determined according to Weber's law; and changing the luminance of the display unit to the second luminance.
Abstract:
A display device, including a first transparent magnetic layer; a display panel on the first transparent magnetic layer; an upper member on the display panel; and a second transparent magnetic layer on the upper member, the second transparent magnetic layer being penetrated by light.
Abstract:
A display device includes a foldable display panel module to fold in a folding region, a folding sensor to sense a folding state of the foldable display panel module, a support on the foldable display panel module in the rigid region, a vibrator on the foldable display panel module in the folding region, and a vibration controller to control a vibration operation of the vibrator based on the folding state.
Abstract:
A display device includes a display panel, an actuator unit including a plurality of actuator members generating vibrations and disposed to face one side of the display panel, and a support unit contacting the actuator unit to receive a vibration generating from the actuator unit and including a plurality of support members disposed to respectively correspond to the plurality of actuator members and spaced apart from each other.
Abstract:
A method of displaying folding information includes evaluating a folded state of a foldable display apparatus, measuring a folding accumulation time that indicates an amount of time that the folded state is maintained, determining the folding information based on the folding accumulation time, and displaying the folding information on a display panel of the foldable display apparatus.
Abstract:
A display device is disclosed. The display device may include a display panel, a light blocking member, a distance sensing member, and a controlling member. The display panel may include a pixel region and a transmission region. The light blocking member may be disposed on a rear surface of the display panel and have an adjustable light transmittance. The distance sensing member may sense a viewing distance between a viewer and the display device. The controlling member may calculate a proper viewing distance range, may compare the viewing distance with the proper viewing distance range to generate a comparison result, and may adjust the light transmittance of the light blocking member based on the comparison result.
Abstract:
A multimedia device includes a distance sensor which measures a viewing distance, a controller which controls an output timing of a video signal and an output timing of an audio signal based on the viewing distance, an audio device which outputs a sound in response to the audio signal, and a display device which outputs an image in response to the video signal.
Abstract:
A stereoscopic display device includes a display unit. The display unit includes a plurality of pixels. A scan driving unit sequentially applies scan signals through a plurality of scan lines to the plurality of pixels. A data driving unit applies gray voltages through a plurality of data lines to the plurality of pixels in response to the scan signals. A signal controlling unit transfers a data control signal and an image data signal to the data driving unit. The signal controlling unit classifies, in accordance with a disparity of objects respectively included in a left-eye image and a right-eye image, an object depth in which an object is recognized by a user. The signal controlling unit resets a luminance of at least one of the left-eye image or the right-eye image corresponding to the object depth.