Abstract:
A light emitting device includes a light emitting chip which generates a first light having a first color, a first cavity layer disposed on the light emitting chip and which generates a second light having a second color and has a first refractive index, a second cavity layer disposed on the first cavity layer and which generates a third light having a third color and has a second refractive index, a first half mirror layer disposed between the first cavity layer and the light emitting chip and which reflects at least a portion of the second light, a second half mirror layer disposed between the first cavity layer and the second cavity layer and which reflects at least a portion of the third light, and a third half mirror layer disposed on the second cavity layer and which transmits the first light.
Abstract:
A light conversion member includes a base substrate, a first light conversion layer disposed on the base substrate and including a plurality of first quantum dots that converts first light into light with a first color, a second light conversion layer disposed between the base substrate and the first light conversion layer and including a plurality of second quantum dots that converts the first light into light with a second color. Each of the first quantum dots includes a first core that converts the first light into light with the first color; a first shell surrounding the first core and including an organic material; and a second shell surrounding the first shell and including an inorganic material.
Abstract:
A display device includes a display panel and a backlight unit which provides light to the display panel. The backlight unit includes a light source which emits the light, a light guide plate which guides the light emitted from the light source toward the display panel, and a prism plate. The prism plate includes a base film disposed on the light guide plate and a plurality of prisms disposed on the base film. Each of the prisms has an isosceles trapezoidal section, two base angles of which are obtuse angles, when viewed from a cross-sectional view in a width direction.
Abstract:
A display device includes a display panel and a backlight unit. The display panel receives a light to display an image and has a first radius of curvature. The backlight unit is disposed under the display panel to provide the light to the display panel and has a second radius of curvature. The backlight unit includes a plurality of light sources and a plurality of scattering units. The light sources emit the light and the scattering units scatter at least a portion of the light.
Abstract:
A light emitting device includes a light emitting chip which generates a first light having a first color, a first cavity layer disposed on the light emitting chip and which generates a second light having a second color and has a first refractive index, a second cavity layer disposed on the first cavity layer and which generates a third light having a third color and has a second refractive index, a first half mirror layer disposed between the first cavity layer and the light emitting chip and which reflects at least a portion of the second light, a second half mirror layer disposed between the first cavity layer and the second cavity layer and which reflects at least a portion of the third light, and a third half mirror layer disposed on the second cavity layer and which transmits the first light.
Abstract:
Provided is a method for a light conversion member including forming a plurality of grooves etched by a predetermined depth from a top surface to a bottom surface of a first substrate, forming a plurality of first connection members disposed in a first unit area partitioned by each of the grooves and having a closed loop shape surrounding each of the grooves on the top surface of the first substrate, forming a quantum dot member in the groove, forming a plurality of second connection members disposed in each of second unit areas partitioned on a bottom surface of a second substrate, cutting the second substrate along boundaries of the second unit areas; bonding a plurality of second sub substrates cut along the second unit areas to the top surface of the first substrate so as to overlap the first unit areas.