Abstract:
A gate driving circuit includes a plurality of stages for providing gate signals, wherein a k-th stage (k is a natural number greater than 3) includes a first output transistor including a control electrode connected to a first node, an input electrode for receiving a clock signal, and an output electrode for outputting a k-th gate signal, a second output transistor including a control electrode connected to the first node, an input electrode for receiving the clock signal, and an output electrode for outputting a k-th carry signal, a pull-down unit connected to a discharge node to pull down the output electrode of the first output transistor in response to a signal of the discharge node, and a discharge unit configured to output a (k−1)-th carry signal output from a (k−1)-th stage to the discharge node in response to a (k+1)-th carry signal output from a (k+1)-th stage.
Abstract:
Provided is a gate driving unit including: a plurality of stages configured to be activated sequentially so as to generate gate signals; and a plurality of repair blocks having sizes smaller than the corresponding stages and configured to repair defects of the stages. Each of the repair blocks is disposed proximate to two or more stages so as to be configured to repair defects in the two or more stages.
Abstract:
A flexible display is disclosed. In one aspect, the display includes at least one first pattern including a plurality of display elements configured to display an image and extending in a first direction. The display device also includes at least one second pattern extending in a second direction and overlapping at least a portion of the first pattern. The second pattern has a curved shape in the first direction and the second direction crosses the first direction. The first and second patterns form at least one cavity region defining a space therebetween and the first and second patterns form a mesh structure.
Abstract:
A gate driving circuit includes: a plurality of stages to provide gate signals to gate lines of a display panel, a k-th stage, where k is a natural number greater than or equal to 2, from among the plurality of stages being configured: to receive a clock signal, a (k−1)th carry signal from a (k−1)th stage, a (k+1)th carry signal from a (k+1)th stage, a (k+2)th carry signal from a (k+2)th stage, a first voltage, and a second voltage, the clock signal being a pulse signal in which a high voltage and a third voltage appear periodically, and the third voltage having a lower voltage level than those of the first voltage and the second voltage; and to output a k-th gate signal and a k-th carry signal.
Abstract:
There is provided a scan driver. The scan driver includes stages. An ith (i is a natural number) stage circuit includes an output unit, a controller configured to control the voltage of the second node in response to a kth (k is a natural number) clock signal supplied to a second input terminal, and an input unit configured to control the voltages of the first node and the second node in response to a carry signal of a previous stage that is supplied to a third input terminal and a carry signal of at least one next stage. The kth clock signal maintains a gate on voltage at a point of time at which a voltage of the jth clock signal is changed to a gate on voltage.