Abstract:
A display device includes a bottom chassis, a mold frame coupled to the bottom chassis, a display panel having curvature and disposed on the mold frame, and a light source disposed on the bottom chassis and configured to supply light to the display panel. The mold frame includes a base unit having a corner portion that has a lower height than a side portion and a protrusion bent and extending from the base unit.
Abstract:
A display device includes a plurality of pixels on a substrate. Each of the pixels includes a first electrode and a second electrode spaced apart from each other on the substrate, and a plurality of light emitting elements, each including a first end portion connected to the first electrode and a second end portion connected to the second electrode. The first electrode includes a plurality of first holes adjacent to the first end portion of each of the light emitting elements.
Abstract:
A panel bottom sheet includes: a first heat dissipation layer; a second heat dissipation layer having circumferential side surfaces located further inside than circumferential side surfaces of the first heat dissipation layer in a plan view, the second heat dissipation layer including: a main heat dissipation pattern including a first opening formed completely through the second heat dissipation layer in a thickness direction; and a heat dissipation substrate disposed directly on the second heat dissipation layer.
Abstract:
A backlight assembly of a Liquid Crystal Display (LCD) is provided with improved heat dissipation capabilities. The improved dissipation capabilities come from one or more light-sourcing unit fixing frames that have extensions which protrude to outside a housing that houses light sourcing units of the LCD. The light-sourcing unit fixing frames mechanically interlock with the housing.
Abstract:
A display device and a driving method thereof are disclosed. The display device includes a subpixel including a light emitting unit including a first electrode, a second electrode, and a plurality of light emitting elements connected between the first electrode and the second electrode, and a driving transistor configured to supply a driving current to the light emitting unit; a detector electrically connected to the light emitting unit to detect a short circuit in the plurality of light emitting elements; and a blocking controller configured to control blocking of the driving current based on an output of the detector. Accordingly, power consumption of the display device may be improved.
Abstract:
A display includes: a display panel; and a panel bottom sheet disposed below the display panel, the panel bottom sheet including: a first heat dissipation layer; a second heat dissipation layer over the first heat dissipation layer, including a first opening formed completely through the second heat dissipation layer in a thickness direction; a heat dissipation coupling interlayer between the first heat dissipation layer and the second heat dissipation layer, and a heat dissipation substrate on the second heat dissipation layer.
Abstract:
A panel bottom sheet includes: a first heat dissipation layer; a second heat dissipation layer having circumferential side surfaces located further inside than circumferential side surfaces of the first heat dissipation layer in a plan view, the second heat dissipation layer including: a main heat dissipation pattern including a first opening formed completely through the second heat dissipation layer in a thickness direction; and a heat dissipation substrate disposed directly on the second heat dissipation layer.
Abstract:
A display device and a driving method thereof are disclosed. The display device includes a subpixel including a light emitting unit including a first electrode, a second electrode, and a plurality of light emitting elements connected between the first electrode and the second electrode, and a driving transistor configured to supply a driving current to the light emitting unit; a detector electrically connected to the light emitting unit to detect a short circuit in the plurality of light emitting elements; and a blocking controller configured to control blocking of the driving current based on an output of the detector. Accordingly, power consumption of the display device may be improved.
Abstract:
A display device includes: a display panel; a bottom container member which receives the display panel; an auxiliary member including a bottom, and a side extending from an edge of the bottom, and coupled with the bottom container member; a light source unit coupled with the side of the auxiliary member; and a first heat radiating member between the auxiliary member and the light source unit. The first heat radiating member includes a phase change material.