Abstract:
A display device is disclosed. The display device may include a display panel, a light blocking member, a distance sensing member, and a controlling member. The display panel may include a pixel region and a transmission region. The light blocking member may be disposed on a rear surface of the display panel and have an adjustable light transmittance. The distance sensing member may sense a viewing distance between a viewer and the display device. The controlling member may calculate a proper viewing distance range, may compare the viewing distance with the proper viewing distance range to generate a comparison result, and may adjust the light transmittance of the light blocking member based on the comparison result.
Abstract:
A multimedia device includes a distance sensor which measures a viewing distance, a controller which controls an output timing of a video signal and an output timing of an audio signal based on the viewing distance, an audio device which outputs a sound in response to the audio signal, and a display device which outputs an image in response to the video signal.
Abstract:
A display apparatus including a display unit including at least one pixel area and a non-pixel area, the non-pixel area dividing the at least one pixel area; and a metamaterial structure that controls a path of light emitted from the at least one pixel area.
Abstract:
A flexible display device includes a display panel having pliability and a dielectric elastomer unit on the display panel. The dielectric elastomer unit is reversibly deformable by an applied voltage to provide stiffness to the display panel.
Abstract:
A display device includes a foldable display panel module to fold in a folding region, a folding sensor to sense a folding state of the foldable display panel module, a support on the foldable display panel module in the rigid region, a vibrator on the foldable display panel module in the folding region, and a vibration controller to control a vibration operation of the vibrator based on the folding state.
Abstract:
A display device, including a first transparent magnetic layer; a display panel on the first transparent magnetic layer; an upper member on the display panel; and a second transparent magnetic layer on the upper member, the second transparent magnetic layer being penetrated by light.
Abstract:
An organic light emitting display device includes a first substrate, a thin film transistor disposed on the first substrate, a first electrode electrically coupled to the thin film transistor, a pixel defining layer disposed on the first substrate and the first electrode to define unit pixels, a plurality of organic light emitting structure disposed on the first electrode, where in the organic light emitting structure includes a first organic light emitting structure, a second organic light emitting structure and a third light emitting structure, a second electrode which covers the first through third organic light emitting structures and the pixel defining layer; a metamaterial layer disposed on the second electrode corresponding to the organic light emitting structures, an encapsulation member which covers the second electrode and the metamaterial layer, and a second substrate disposed on the encapsulation member opposite to the first substrate.
Abstract:
An exemplary embodiment of the present inventive concept discloses an electronic device, including a display, a body to which the display is attached, wherein the body is coated with a meta-material, the meta-material configured to divert an electromagnetic wave based on refraction characteristics, and a display-cover that blocks the display from outside when the display is turned off, wherein the display-cover is coated with the meta-material.