Abstract:
A display device includes a plurality of pixels arranged in a column direction and a row direction, a plurality of data lines and a data driving part configured to apply data signals to the data lines. The data lines are connected with one of the pixels of a k-th column (‘k’ is a natural number) and one of the pixels of a (k+1)-th column in an odd-numbered row. The data lines are connected with one of the pixels of a (k+1)-th column and one of the pixels of a (k+2)-th column in an even-numbered row. As a result, a pseudo dot inversion drive pattern may be implemented while driving the data lines in accordance with a columnar polarity inversion scheme.
Abstract:
A display device is provided which includes a display panel including a plurality of pixels connected with a plurality of gate lines and a plurality of data lines; a gate driving unit configured to drive the plurality of gate lines; a data driver configured to drive the plurality of data lines; and a timing controller configured to generate a plurality of control signals for controlling the gate driving unit and the data driver in response to externally provided clock signal and data signals. The timing controller converts the data signals into an image data signal, a horizontal synchronization signal, a vertical synchronization signal, and a data enable signal, a pulse width of each of the horizontal and vertical synchronization signals corresponding to an aspect ratio of the data signals or a size of a black image display area. The timing controller generates the plurality of control signals according to the image data signal, the data enable signal, and pulse widths of the horizontal synchronization signal and the vertical synchronization signal.
Abstract:
A display device includes a plurality of pixels arranged in a column direction and a row direction, a plurality of data lines and a data driving part configured to apply data signals to the data lines. The data lines are connected with one of the pixels of a k-th column (‘k’ is a natural number) and one of the pixels of a (k+1)-th column in an odd-numbered row. The data lines are connected with one of the pixels of a (k+1)-th column and one of the pixels of a (k+2)-th column in an even-numbered row. As a result, a pseudo dot inversion drive pattern may be implemented while driving the data lines in accordance with a columnar polarity inversion scheme.
Abstract:
A display apparatus includes a display panel including a display area in which gate lines and data lines are disposed to display an image and a peripheral area which is disposed around the display area and includes fan-out lines having different lengths, and a driving part configured to output driving signals having different levels to channels respectively connected to the fan-out lines according to the different lengths of the fan-out lines.
Abstract:
A liquid crystal display (“LCD”) includes; a gate line, a plurality of pairs of a first data line and a second data line which border a plurality of pixel regions and are disposed respectively on both sides of each pixel region, a plurality of pairs of first and second thin-film transistors (“TFTs”) which are connected to the gate line and a pair of the first and second data lines, and a first and second subpixel electrode disposed in each pixel region and connected to the first and second TFTs, respectively, wherein the pixel regions include first through third pixel regions arranged in the first direction, wherein at least one of the first and second TFTs of the second pixel region is disposed on a same side of an adjacent data line as the first and second subpixel electrodes of one of the first and third pixel regions.
Abstract:
A method of operating a display panel in which a plurality of decisions are generated by detecting transitions of a plurality of present pixel data included in a present frame image. A uniform dynamic capacitance compensation (DCC) is performed based on the plurality of decisions. A present grayscale of each of the plurality of present pixel data increases by a first compensation value, decreases by a second compensation value, or is maintained based on the uniform DCC.
Abstract:
A liquid crystal display system including a signal processing device uses interpolation to generate an intermediate image frame using previous image frame data and present image frame data. The system converts data of the intermediate image frame into transposed image data that is to be used to drive a liquid crystal display panel and display a corresponding image. The transposed image data and the present image data are subjected to a prespecified DCC process (dynamic capacitance compensation process) to thereby generate respective first and second compensation image data. Since the first compensation image data is generated based on the transposed image data and the transposition is configured to prevent over-compensation by the DCC process, over-compensation by the dynamic capacitance compensation process can be reduced or prevented.