Abstract:
A tiled display device includes a first display device including a first display panel configured to sense a touch thereon and display an image signal, and a first controller configured to control the first display panel and transmit a reference signal wirelessly, and a second display device including a second display panel configured to sense a touch thereon and display the image signal, and a second controller configured to control the second display panel and transmit a first ACK signal to the first controller after receiving the reference signal, in which the first controller is configured to determine a first latency time of the second display device by using the reference signal and the first ACK signal and synchronize touch information of the first and second display devices according to the first latency time.
Abstract:
Gamma applied data generating circuit includes motion vector extractor, gamma pattern generator, first gamma applier, second gamma applier, and output converter. Motion vector extractor extracts motion vector of object. Gamma pattern generator generates first gamma pattern corresponding to first motion vector value and second gamma pattern corresponding to second motion vector value from first time point. Value of motion vector is changed from first motion vector value to second motion vector value at first time point. First and second gamma appliers generate first and second data by applying first and second gamma pattern to input data, respectively. Output converter outputs sum of first data times first weight and second data times second weight as gamma applied data. From first time point to second time point, output converter converts first weight from 1 to 0 and converts second weight from 0 to 1.
Abstract:
A display apparatus includes a latch circuit configured to generate a second data value from a first data value, wherein the bit count of the second data value is greater than the bit count of the first data value, a digital-analog converter configured to convert the second data value into gray scale voltages, an output buffer unit configured to amplify the current level of the gray scale voltages to generate data voltages, a data switch circuit configured to invert the polarity of the data voltages every frame, and a display panel including a plurality of pixels driven with the data voltages supplied from the data switch circuit in response to sequential application of gate signals.
Abstract:
A liquid crystal display system including a signal processing device uses interpolation to generate an intermediate image frame using previous image frame data and present image frame data. The system converts data of the intermediate image frame into transposed image data that is to be used to drive a liquid crystal display panel and display a corresponding image. The transposed image data and the present image data are subjected to a prespecified DCC process (dynamic capacitance compensation process) to thereby generate respective first and second compensation image data. Since the first compensation image data is generated based on the transposed image data and the transposition is configured to prevent over-compensation by the DCC process, over-compensation by the dynamic capacitance compensation process can be reduced or prevented.
Abstract:
A display device includes a display panel displaying an image and having a first radius of curvature, a distance measuring unit measuring a user distance, the user distance being a distance between the display panel and a user, and a curvature radius changing unit receiving the measured user distance from the distance measuring unit, to change the first radius of curvature of the display panel to a second radius of curvature different from the first radius of curvature.
Abstract:
A display apparatus having an edge determiner configured to determine an edge area of the moving object based on moving direction and moving speed corresponding to the moving vector. The display apparatus also includes a gamma output controller configured to output normal high data of a high gamma curve and normal low data of a low gamma curve as gamma data of input data corresponding to a remaining area except for the edge area, and to output enhanced high data of the high gamma curve and enhanced low data of the low gamma curve as gamma data of input data corresponding to the edge area, in both time division method and space division method based on a spatiotemporal sequential pattern.
Abstract:
A display device includes: a similar gray level block detector configured to detect a pixel data block in which a gray level difference between a plurality of pixel data included in an image signal is smaller than or equal to a threshold; a skin tone detector configured to detect the pixel data block including a skin tone; and a gamma processor configured to apply a first gamma to a plurality of pixel data included in the pixel data block when the pixel data block does not include the skin tone and apply a second gamma to the plurality of pixel data included in the pixel data block when the pixel data block includes the skin tone.
Abstract:
A method of driving a display panel is proposed. The method includes determining whether an input image data represents a video image or a static image, determining whether an image transition occurs in the input image data when the input image data represents the static image, and inserting a plurality of image sticking compensation frames between normal frames in a low frequency driving when the image transition occurs in the input image data between the normal frames. The number of the image sticking compensation frame may be properly adjusted during a cycle of low frequency driving.
Abstract:
A display device includes a timing controller, a data driver, and a display panel. The timing controller includes a first compensator receiving a first image data, selecting a temperature compensation value in accordance with the external temperature, and converting the first image data to a second image data on the basis of the selected temperature compensation value and a second compensator selecting a kickback voltage compensation value predetermined in accordance with the areas of the display panel and converting the second image data to the output image data on the basis of the kickback voltage compensation value selected in accordance with the areas.
Abstract:
An image processing method includes: receiving an input image signal (IIS); doubling the IIS into frames; determining a TGM mode to control an order in which gamma curves (GC) are to be applied to the doubled IIS, the GCs including first and second GCs; applying the GCs to the doubled IIS based on the TGM mode to generate a doubled, TGM-processed image signal (DTIS); correcting the DTIS to generate a corrected image signal (CIS); and dither-processing the CIS to generate an output image signal. The dither-processing of the CIS includes: performing dither-processing by sequentially applying dithering patterns (DP) of a first DP set to the CIS in association with first ones of the frames with respect to the first GC, and performing the dither-processing by sequentially applying DPs of a second DP set to the CIS in association with second ones of the frames with respect to the second GC.