Abstract:
A curved display device including a plurality of pixels that may be bent in a first direction crossing a second direction. The curved display device may include first and second substrates facing each other, and a liquid crystal layer interposed between the first and second substrates.
Abstract:
Provided is a display panel including: an array substrate; an opposite substrate facing the array substrate and including a second base substrate and a common electrode disposed on the second base substrate; and a liquid crystal layer disposed between the array substrate and the opposite substrate. The array substrate includes: a first base substrate disposed in a display area and a non-display area; a photosensitive polymer organic layer disposed in a first non-display area and extending to a pad area, the photosensitive polymer organic layer having a taper shape at an end portion of the first non-display area; a thin film transistor disposed on the first base substrate in the display area; a pixel electrode connected to the thin film transistor; and a signal input pad connected to the thin film transistor and disposed on the photosensitive polymer organic layer in the pad area.
Abstract:
An apparatus for manufacturing a quantum dot is provided, the apparatus including a first supplying part that provides a cationic precursor, a second supplying part that provides an anionic precursor, a mixing part connected to the first supplying part and the second supplying part, and a reaction part including a reaction tube configured to receive a liquid mixture of the cationic precursor and the anionic precursor from the mixing part and a first microwave generator configured to provide a microwave that is transmitted through the reaction tube. Therefore, the apparatus may produce a quantum dot of multi-element compounds.
Abstract:
A curved display device including a plurality of pixels that may be bent in a first direction crossing a second direction. The curved display device may include first and second substrates facing each other, and a liquid crystal layer interposed between the first and second substrates.
Abstract:
A liquid crystal display device is fabricated by forming a first alignment layer on a first base substrate. A second alignment layer is formed on a second base substrate. A liquid crystal is disposed on one of the first alignment layer and the second alignment layer. The first base substrate and the second base substrate are combined. At least one of the first alignment layer and the second alignment layer is formed by forming an alignment solution on a corresponding base substrate. An alignment layer is formed by curing the alignment solution. The alignment layer is aligned by radiating a light onto the base substrate, first cleaning the base substrate, and baking the alignment layer.
Abstract:
Disclosed are display panels and methods of fabricating the same. The display panel includes a base substrate having a pixel area and a peripheral area adjacent to the pixel area, a light emitting element on the base substrate to generate a first light and overlapping the pixel area, a light control layer on the light emitting element to convert the first light into a white light, and a color filter layer on the light control layer and includes a first color filter that allows penetration of the first light, a second color filter that allows penetration of a second light different from the first light, and a third color filter that allows penetration of a third light different from the first light and the second light.
Abstract:
Disclosed are display panels and methods of fabricating the same. The display panel includes a base substrate having a pixel area and a peripheral area adjacent to the pixel area, a light emitting element on the base substrate to generate a first light and overlapping the pixel area, a light control layer on the light emitting element to convert the first light into a white light, and a color filter layer on the light control layer and includes a first color filter that allows penetration of the first light, a second color filter that allows penetration of a second light different from the first light, and a third color filter that allows penetration of a third light different from the first light and the second light.
Abstract:
A quantum dot, a method of preparing the quantum dot, and an optical member and an electronic device, each including the quantum dot, are provided. The quantum dot includes: a core including a Group III-V semiconductor compound alloyed with gallium (Ga); a first shell surrounding the core; and a second shell surrounding the first shell, wherein the first shell includes a first compound that includes a Group II-VI semiconductor compound, a Group III-V semiconductor compound, or a Group III-VI semiconductor compound, the second shell includes a second compound that includes a Group II-VI semiconductor compound, a Group III-V semiconductor compound, or a Group III-VI semiconductor compound, the first compound and the second compound are different from each other, and the atomic percentages of specific elements in a material of the core, elemental ratios in the first shell and second shell with respect to the core satisfy certain ranges.
Abstract:
A liquid crystal display may be manufactured by forming a first alignment layer on a first base substrate, forming a second alignment layer on a second base substrate, disposing liquid crystal on the first alignment layer or the second alignment layer, and combining the first base substrate and the second base substrate with each other. At least one of the first and second alignment layers may be formed by forming an alignment solution including an alignment agent and a cross-linking agent on the first or second base substrate. The alignment solution is cured at a first temperature to form an alignment layer. The base substrate is exposed to light or an electron beam to align the alignment layer. The alignment layer is baked at a second temperature. The first temperature is lower than a cross-linking reaction temperature of the cross-linking agent.
Abstract:
Provided are an organometallic halide compound represented by Formula 1 and having a zero-dimensional non-perovskite structure, and a light-emitting device, an optical member, and an apparatus, each including the organometallic halide compound. The light-emitting device may include a first electrode, a second electrode facing the first electrode, and an emission layer between the first electrode and the second electrode, where the emission layer includes the organometallic halide compound.