Abstract:
A display device includes: a substrate including a display area and a peripheral area; a first conductive layer on the substrate in the peripheral area; an insulation layer covering the first conductive layer; and a second conductive layer on the insulation layer in the peripheral area, the second conductive layer including a plurality of first holes, wherein the first conductive layer does not overlap the first holes of the second conductive layer.
Abstract:
An organic light-emitting diode (OLED) display apparatus and a method of manufacturing the OLED display apparatus, the apparatus includes anode electrodes having different thicknesses for different types of sub-pixels.
Abstract:
A thin film transistor (TFT) includes a substrate, a semiconductor pattern on the substrate, the semiconductor pattern including an active region, and source and drain regions opposite to each other at respective sides of the active region, a first insulating layer on the active region, a gate electrode on the first insulating layer, the gate electrode overlapping the active region, a second insulating layer on a front surface of the substrate having the gate electrode formed thereon, the second insulating layer including contact holes through which portions of the respective source and drain regions are exposed, and source and drain electrodes formed on the second insulating layer, the source and drain electrodes being respectively coupled to the source and drain regions through the contact holes.
Abstract:
A thin film transistor (TFT) includes a semiconductor active layer, a gate electrode, a source electrode, and a drain electrode. The semiconductor active layer includes a first doped region as a source region, a second doped region as a drain region, an undoped region between the first and second doped regions. A third doped region is disposed between the second doped region and the undoped region. The gate electrode is insulated from the semiconductor active layer and overlaps the third doped region and the undoped region. The source electrode and the drain electrode are connected to the first and second doped regions.
Abstract:
An organic light emitting diode (OLED) display includes a scan line, a data line, a driving voltage line, a switching transistor, a driving transistor and an OLED. The scan line is formed on a substrate to transmit a scan signal. The data line and the driving voltage line, intersecting the scan line, transmit a data signal and a driving voltage, respectively. The switching transistor, electrically coupled to the scan line and the data line, includes a switching semiconductor layer, a switching gate electrode, and a gate insulating layer having a first thickness. The driving transistor, electrically coupled to the switching drain electrode, includes a driving semiconductor layer, a driving gate electrode and a gate insulating layer having a second thickness. The OLED is electrically coupled to the driving drain electrode. The data line and the driving voltage line are formed with different layers from each other.
Abstract:
A display includes a switching transistor connected to a scan line and data line, a driving transistor connected to the switching transistor, a storage capacitor between a voltage line and the driving transistor, and an organic light emitting diode connected to the driving transistor. The data line and voltage line are at different layers, and the data line and a gate electrode of the driving transistor are at different layers. Also, a plate of the storage capacitor and the gate electrode of the driving transistor are of a same layer, and semiconductor layers of the switching and driving transistors are of a same layer.
Abstract:
An organic light emitting diode (OLED) display including a first pixel, a second pixel, and a third pixel disposed in a matrix and first to third driving voltage lines configured to transmit a driving voltage to the first to third pixel, respectively. A width of one driving voltage line among the first to third driving voltage lines is different from the width of the other driving voltage lines.