Abstract:
An organic light emitting display device includes a plurality of pixels, a data driver, and a plurality of demultiplexers. The pixels are in an area defined by scan lines and data lines. The data driver progressively supplies data signals to output lines every horizontal period. The demultiplexers are coupled to respective ones of the output lines. Each demultiplexer supplies data signals to a first number of data lines coupled to the demultiplexer during a horizontal period.
Abstract:
A pixel includes an organic light emitting diode, a first transistor, and a second transistor. The first transistor establishes a first current path between a first node coupled to a first power source and a second node coupled to the organic light emitting diode. The second transistor establishes a second current path between the first and second nodes. The first and second transistors are coupled in parallel.
Abstract:
According to exemplary embodiments of the present disclosure, a capacitor may be connected to a gate electrode of a transistor. The capacitor includes a first gate electrode connected to the gate electrode of the transistor, a gate insulation layer formed on the first gate electrode, and an upper electrode formed on the gate insulation layer. The upper electrode is formed to cover a region where the first gate electrode and the upper electrode are overlapped. The capacitor is applicable to at least one of a light emitting driving circuit and a scan driving circuit, and at least one of the light emitting driving circuit and the scan driving circuit may be included in a display device.
Abstract:
An organic light-emitting display apparatus including a shield layer and a method of manufacturing the same are provided. The organic light-emitting display apparatus includes a substrate having a display area and a peripheral area surrounding the display area. A plurality of first thin film transistors (TFTs) are disposed in the display area of the substrate and a plurality of second TFTs disposed in the peripheral area of the substrate. A shield layer is positioned above the second TFTs and extended to an edge portion of the substrate. The shield layer includes a plurality of through holes in a portion that does not overlap with the second TFTs.
Abstract:
An organic light-emitting display apparatus includes a pixel circuit, a light emitter, an initialization transistor, and a coupling capacitor. The pixel circuit outputs a driving current to a node based on a data signal. The light emitter emits light based on the driving current at the node. The initialization transistor outputs an initial voltage to the node based on a first control signal received through a first control line. The coupling capacitor is between the node and the first control line.
Abstract:
An organic light emitting diode (OLED) display, including a flexible substrate bent in a first direction, an OLED arranged on the flexible substrate, a first thin film transistor connected to the OLED and including a first channel area extending in a second direction crossing the first direction, and one or more additional thin film transistors connected to the first thin film transistor and including corresponding additional channel areas extending in the second direction.
Abstract:
A display device includes a display panel having an encapsulation substrate over a display substrate, at least one film on the display panel, a black matrix on the at least one functional film, and a viewing angle controller on the display panel and overlapping at least the black matrix.
Abstract:
An organic light emitting diode (OLED) display, including a flexible substrate bent in a first direction, an OLED arranged on the flexible substrate, a first thin film transistor connected to the OLED and including a first channel area extending in a second direction crossing the first direction, and one or more additional thin film transistors connected to the first thin film transistor and including corresponding additional channel areas extending in the second direction.
Abstract:
A flat panel display device includes a pixel unit having scan-lines, data-lines, and first through third pixels that are coupled to the scan-lines and the data-lines, a scan driver that applies a scan signal to the pixel unit, a data driver that selectively applies a first data signal, a second data signal, a third data signal, and an initialization signal to the pixel unit, a demultiplexing unit having at least one demultiplexer that applies the first data signal, the second data signal, and the third data signal to the first pixels, the second pixels, and the third pixels, respectively, and that simultaneously applies the initialization signal to the first through third pixels, and a timing control unit that controls the scan driver, the data driver, and the demultiplexing unit.
Abstract:
A flexible display device including a display area for displaying an image and a non-display area neighboring the display area includes: a flexible substrate including a plurality of chamfers on respective ends corresponding to the non-display area; a display provided on the flexible substrate corresponding to the display area and displaying the image; and a driver provided on the flexible substrate corresponding to the non-display area and connected to the display.