Abstract:
A display apparatus includes a display device and an encapsulation layer covering the display device. The encapsulation layer includes a first inorganic encapsulation layer, a second inorganic encapsulation layer, and a hybrid encapsulation layer positioned between the first inorganic encapsulation layer and the second inorganic encapsulation layer. The hybrid encapsulation layer includes at least one of alucone, zircone, zincone, titanicone, and nickelcone.
Abstract:
Provided are a thin-film transistor (TFT), a method of manufacturing the same, and a method of manufacturing a backplane for a flat panel display (FPD). The method of manufacturing the TFT according to an embodiment of the present invention includes forming a gate electrode on a substrate; forming an insulating layer on the substrate to cover the gate electrode; performing a plasma treatment on an upper surface of the insulating layer using a halogen gas; forming an oxide semiconductor layer on the insulating layer and positioned to correspond to the gate electrode; and forming source and drain electrodes on the insulating layer to contact and over portions of the oxide semiconductor layer.
Abstract:
A rollable display device includes a rollable structure including a plurality of unit structures, the rollable structure being rollable and unrollable based on the unit structures, and a display panel structure attached to the rollable structure, wherein respective widths of the unit structures increase in a direction from a first side of the rollable structure to a second side of the rollable structure, the first side of the rollable structure being opposite to the second side of the rollable structure, and wherein each of the unit structures includes a metal plate, the metal plate being bent by a bending limit angle in a direction in which the rollable structure is rolled, and a magnetic object on a side region of the metal plate, the magnetic object being magnetically coupled to an adjacent metal plate.
Abstract:
An organic light emitting diode (OLED) display, including a flexible substrate bent in a first direction, an OLED arranged on the flexible substrate, a first thin film transistor connected to the OLED and including a first channel area extending in a second direction crossing the first direction, and one or more additional thin film transistors connected to the first thin film transistor and including corresponding additional channel areas extending in the second direction.
Abstract:
An organic light emitting diode (OLED) display, including a flexible substrate bent in a first direction, an OLED arranged on the flexible substrate, a first thin film transistor connected to the OLED and including a first channel area extending in a second direction crossing the first direction, and one or more additional thin film transistors connected to the first thin film transistor and including corresponding additional channel areas extending in the second direction.
Abstract:
A display device includes a first display, an accommodation unit on a side of the first display, and a second display. The second display is rollably accommodated in the accommodation unit in a rolled state.
Abstract:
A method of manufacturing silver nanowires includes: forming a first solution including a dispersion stabilizer and a polyol; forming a second solution including a dispersion stabilizer, a silver precursor, a halogen-ion donor, deionized water, and the polyol; forming a third solution by adding the second solution to the first solution; heating the third solution from a first temperature to a second temperature; and forming silver nanowires by maintaining the third solution at the second temperature.
Abstract:
Provided are a thin-film transistor (TFT), a method of manufacturing the same, and a method of manufacturing a backplane for a flat panel display (FPD). The method of manufacturing the TFT according to an embodiment of the present invention includes forming a gate electrode on a substrate; forming an insulating layer on the substrate to cover the gate electrode; performing a plasma treatment on an upper surface of the insulating layer using a halogen gas; forming an oxide semiconductor layer on the insulating layer and positioned to correspond to the gate electrode; and forming source and drain electrodes on the insulating layer to contact and over portions of the oxide semiconductor layer.
Abstract:
A flexible display comprises a flexible substrate made of plastic material, a display element on a first surface of the flexible substrate, and a surface residual film containing at least one of a metal material or a metal oxide material. The surface residual film is bonded to at least a part of a second surface of the flexible substrate. The second surface is opposed to the first surface. A method for manufacturing a flexible display comprises preparing a glass substrate, forming adhesive material film on the glass substrate, the adhesive material film being made of at least one of a metal material or a metal oxide material, and forming a flexible substrate from plastic material on the adhesive material film.