Abstract:
A multilayer ceramic capacitor includes a body including a first dielectric layer on which a first internal electrode, a first coupling portion, and a second internal electrode are disposed, a second dielectric layer on which a third internal electrode, a second coupling portion, and a fourth internal electrode are disposed, and a third dielectric layer on which a fifth internal electrode or a sixth internal electrode is disposed, and first and second external electrodes connected to the first to sixth internal electrodes, and disposed on both surfaces of the body in the first direction. The first to third dielectric layers are sequentially stacked.
Abstract:
A multilayer ceramic electronic component includes: a ceramic body including dielectric layers; an active part including first and second internal electrodes which are exposed to both end surfaces of the ceramic body in a length direction thereof, and floating electrodes which are partially overlapped with the first and second internal electrodes; upper and lower cover parts including the dielectric layers and disposed above and below the active part; dummy electrodes disposed in the upper and lower cover parts to be overlapped with the floating electrodes; and first and second external electrodes.
Abstract:
A laminated chip electronic component includes: a ceramic body including internal electrodes and dielectric layers; external electrodes formed to cover both end portions of the ceramic body in a length direction; an active layer in which the internal electrodes are disposed in an opposing manner, while having the dielectric layers interposed therebetween, to form capacitance; and upper and lower cover layers formed on upper and lower portions of the active layer in a thickness direction, the lower cover layer having a thickness greater than that of the upper cover layer.
Abstract:
A multilayer ceramic electronic component may includes: a ceramic body including dielectric layers; an active layer including first and second internal electrodes disposed to be exposed to both end surfaces of the ceramic body in a length direction of the ceramic body, respectively, first floating electrodes overlapping the first and second internal electrodes while being spaced apart from each other in the thickness direction of the ceramic body, second floating electrodes each disposed to be spaced apart from the first and second internal electrodes, and first and second dummy electrodes disposed to be spaced apart from the first floating electrodes; upper and lower cover layers disposed upwardly and downwardly of the active layer, respectively; third and fourth dummy electrodes disposed to be exposed to both end surfaces of the ceramic body in the length direction of the ceramic body, respectively; and fifth dummy electrodes.
Abstract:
A multilayer ceramic capacitor may include a ceramic body including dielectric layers, first and second internal electrodes disposed in the ceramic body to face each other, the dielectric layer being interposed between the first and second internal electrodes, and first and second external electrodes covering both end surfaces of the ceramic body. The ceramic body may include an active layer as a capacitance forming part and a cover layer as a non-capacitive part disposed on at least one surface of upper and lower surfaces of the active layer, the cover layer including at least one buffer layer, and when a thickness of the cover layer is defined as tc, and a thickness of the buffer layer is defined as ti, ti/tc being in a range of 0.15 to 0.90 (0.15≦ti/tc≦0.90).
Abstract:
A multilayer electronic component includes a body comprising dielectric layers, and first and second internal electrode layers alternately stacked in a stacking direction with respective dielectric layers interposed therebetween. The first internal electrode layer includes first and second internal electrodes arranged with a first spacer interposed therebetween, and the second internal electrode layer includes third and fourth internal electrodes arranged with a second spacer interposed therebetween.
Abstract:
A multilayer ceramic capacitor includes a body including a first dielectric layer on which a first internal electrode, a first coupling portion, and a second internal electrode are disposed, a second dielectric layer on which a third internal electrode, a second coupling portion, and a fourth internal electrode are disposed, and a third dielectric layer on which a fifth internal electrode or a sixth internal electrode is disposed, and first and second external electrodes connected to the first to sixth internal electrodes, and disposed on both surfaces of the body in the first direction. The first to third dielectric layers are sequentially stacked.
Abstract:
A chip component includes: a ceramic body including a capacitance forming part in which first and second dielectric layers are alternately disposed; and external electrodes disposed on both end surfaces of the ceramic body, wherein the capacitance forming part includes first and second internal electrodes spaced apart from each other on the first dielectric layers and exposed to the end surfaces of the ceramic body to thereby be connected to the external electrodes; and floating electrodes disposed on the second dielectric layers and overlapped with portions of the first and second internal electrodes, the ceramic body includes protective parts disposed between upper and lower surfaces thereof and the capacitance forming part and having third dielectric layers on which first and second dummy electrodes exposed to the end surfaces of the ceramic body are disposed, and the protective parts include third dummy electrodes disposed between the first and second dummy electrodes.