Abstract:
A point cloud encoding device includes a point cloud encoding device includes a communication interface and a processor operably coupled to the communication interface. The communication interface is configured to receive a plurality of independent bitstreams. The communication interface is also configured to receive a grouping message indicating a group of assets from the plurality of independent bitstreams containing visual volumetric coding (V3C) content. The processor is configured to select the group of assets based on the grouping message. The processor is configured to decode at least the selected group of assets.
Abstract:
A decoding device and an encoding device for storage of EVC decoder configuration information are disclosed. The decoding device includes a communication interface and a processor operably coupled to the communication interface. The communication interface receives a compressed bitstream. The processor identifies a frame width value and a frame height value in a video decoder configuration record in combination with an SPS_in_stream value; and decodes the compressed video bitstream based on the frame width value and frame height value.
Abstract:
An apparatus includes receive path circuitry configured to receive a Motion Picture Experts Group (MPEG) Media Transport (MMT) container and a processing device configured to identify locations of one or more media fragment units (MFUs) in the MMT container using a hint track within the MMT container. Another apparatus includes transmit path circuitry configured to transmit an MMT container and a processing device configured to identify locations of one or more MFUs in the MMT container using a hint track within the MMT container.
Abstract:
Methods and apparatuses for managing received data by a client device and indicating data removal management by a server. A method for managing received data by a client device includes receiving a message including information about a number of modes for removal of the data from a buffer at the client. The method also includes selecting a mode for removal of the data from the buffer with a maximum required buffer size among the modes indicated by the information about the modes in the received message and removing the data from the buffer based on the identified mode. A method for indicating data removal management by a server includes generating and sending a message including information about a number of modes for removal of received data from a buffer at a client device. The information indicates, for each of the modes, a type of mode for removal of the data.
Abstract:
An encoding device, a decoding device and a method for point cloud encoding is provided. The method includes generating, for a 3D point cloud, frames corresponding to attributes of the 3D point cloud and an occupancy map. The method also includes encoding, the frames to generate one or more bitstreams. The one or more bitstreams include individual tracks and media content. The individual tracks include media tracks and a timed metadata track. The timed metadata track references the media tracks and the media tracks correspond respectively to the attributes. The method also includes generating a container including the one or more bitstreams transmitting the container.
Abstract:
A decoding device, an encoding device and a method for point cloud decoding is disclosed. The method includes decoding the compressed bitstream into a first set and second set of 2-D frames. The first set of 2-D frames include first set of regular patches representing geometry of a 3-D point cloud and the second set of 2-D frames include first set of regular patches representing texture of the 3-D point cloud. The method includes identifying in the first set of 2-D frames, a missed points patch representing geometry of points of the 3-D point cloud not included in the regular patches, and in the second set of 2-D frames a missed points patch that represents texture of the points of the 3-D point cloud not included in the regular patches. The method also includes generating, using the set of 2-D frames, the 3-D point cloud using the missed points patches.
Abstract:
A user equipment (UE) for processing 360° video includes a memory and a processor. The memory receives video data and metadata for processing the video data where the video includes a plurality of regions. The processor determines when the metadata includes an indication that at least one region from the plurality of regions includes a guard margin along at least one boundary of the at least one region. When the indication indicates that the at least one region includes the guard margin, the processor process the video data based on the received metadata.
Abstract:
A method includes identifying an optimal backlight value for at least one quality level of a first video segment. The method also includes transmitting data for the first video segment. The transmitted data for the first video segment includes a message containing a first set of display adaptation information. The first set of display adaptation information includes the optimal backlight value for the at least one quality level of the first video segment. The method further includes identifying a backlight value for the at least one quality level of a second video segment. The method also includes determining a maximum backlight value change threshold between successive video segments. In addition, the method includes applying temporal smoothing between the optimal backlight value and the backlight value based on the maximum backlight value change threshold.
Abstract:
A method, decoder and server for managing buffers for rate pacing. The decoder includes a memory, a transceiver configured to transmit and receive a signal, and processing circuitry operably connected to the memory and the transceiver. The processing circuitry receives, from the server, a removal rate message indicating a drain rate of a pacing buffer of the decoder. The processing circuitry also provides packets from the pacing buffer to a decoding buffer of the decoder according to the drain rate.
Abstract:
An access point that provides video streaming performs a bottleneck QoE maximization solution utilizing the latest media transport technology developed by MPEG known as MPEG Media Transport (MMT). The access point includes a transceiver configured to transmit one or more video sequences. The access point also includes one or more processors configured to perform bottleneck coordination by utilizing MMT to transmit, via the transceiver, the one or more video sequences.