Abstract:
A Field Effect Transistor (FET) structure may include a fin on a substrate having a first lattice constant and at least two different lattice constant layers on respective different axially oriented surfaces of the fin, wherein the at least two different lattice constant layers each comprise lattice constants that are different than the first lattice constant and each other.
Abstract:
A Field Effect Transistor (FET) structure may include a fin on a substrate having a first lattice constant and at least two different lattice constant layers on respective different axially oriented surfaces of the fin, wherein the at least two different lattice constant layers each comprise lattice constants that are different than the first lattice constant and each other.
Abstract:
A semiconductor device includes a fin region with long and short sides, a first field insulating layer including a top surface lower than that of the fin region and adjacent to a side surface of the short side of the fin region, a second field insulating layer including a top surface lower than that of the fin region and adjacent to a side surface of the long side of the fin region, an etch barrier pattern on the first field insulating layer, a first gate on the fin region and the second field insulating layer to face a top surface of the fin region and side surfaces of the long sides of the fin region. A second gate is on the etch barrier pattern overlapping the first field insulating layer. A source/drain region is between the first gate and the second gate, in contact with the etch barrier pattern.
Abstract:
A semiconductor device includes a fin region with long and short sides, a first field insulating layer including a top surface lower than that of the fin region and adjacent to a side surface of the short side of the fin region, a second field insulating layer including a top surface lower than that of the fin region and adjacent to a side surface of the long side of the fin region, an etch barrier pattern on the first field insulating layer, a first gate on the fin region and the second field insulating layer to face a top surface of the fin region and side surfaces of the long sides of the fin region. A second gate is on the etch barrier pattern overlapping the first field insulating layer. A source/drain region is between the first gate and the second gate, in contact with the etch barrier pattern.
Abstract:
A semiconductor device includes a substrate with a NMOS region and a PMOS region, a device isolation layer on the substrate to define active fins, and gate patterns on the substrate to have a length direction crossing the active fins, wherein the device isolation layer includes diffusion brake regions between respective pairs of the active fins, the diffusion brake regions being disposed adjacent to each other in a width direction of the gate patterns, and wherein a width of the diffusion brake region in the NMOS region is different from a width of the diffusion brake region in the PMOS region.
Abstract:
A semiconductor device includes a fin region with long and short sides, a first field insulating layer including a top surface lower than that of the fin region and adjacent to a side surface of the short side of the fin region, a second field insulating layer including a top surface lower than that of the fin region and adjacent to a side surface of the long side of the fin region, an etch barrier pattern on the first field insulating layer, a first gate on the fin region and the second field insulating layer to face a top surface of the fin region and side surfaces of the long sides of the fin region. A second gate is on the etch barrier pattern overlapping the first field insulating layer. A source/drain region is between the first gate and the second gate, in contact with the etch barrier pattern.