Abstract:
Provided is a method and apparatus that may generate a three-dimensional (3D) object from a two-dimensional (2D) image, and render the generated 3D object.Light source information may be extracted from the 2D image using a characteristic of the 2D image, and property information associated with the 2D image may be extracted based on the light source information. In particular, specular information, scattering information, and the like may be stored in a database using a plurality of samples. Since pecular information or scattering information similar to an input image may be retrieved from the data base, property information may be quickly extracted.
Abstract:
An apparatus and method for processing three-dimensional (3D) information is described. The 3D information processing apparatus may measure first depth information of an object using a sensor apparatus such as a depth camera, may estimate a foreground depth of the object, a background depth of a background, and a degree of transparency of the object, may estimate second depth information of the object based on the estimated foreground depth, background depth, and degree of transparency, and may determine the foreground depth, the background depth, and the degree of transparency through comparison between the measured first depth information and the estimated second depth information.
Abstract:
An apparatus for image matching between multiview cameras includes a pattern model storing unit to store a pattern model, a matching processing unit to match the stored pattern model with a point cloud obtained by at least one depth camera, and a parameter obtaining unit to obtain a parameter for each of the at least one depth camera, based on a result of the matching.
Abstract:
A method of acquiring geometry of a specular object is provided. Based on a single-view depth image, the method may include receiving an input of a depth image, estimating a missing depth value based on connectivity with a neighboring value in a local area of the depth image, and correcting the missing depth value. Based on a composite image, the method may include receiving an input of a composite image, calibrating the composite image, detecting an error area in the calibrated composite image, and correcting a missing depth value of the error area.
Abstract:
An apparatus and method of correcting an image are provided. The apparatus includes a receiver to receive a depth value and a luminous intensity, the depth value and the luminous intensity being measured by at least one depth sensor, and a correction unit to read a correction depth value of a plurality of correction depth values mapped to different depth values and different luminous intensities from a first storage unit and to correct the measured depth value using the read correction depth value, the correction depth value being mapped to the measured depth value and the measured luminous intensity.
Abstract:
An apparatus and method for processing three-dimensional (3D) information is described. The 3D information processing apparatus may measure first depth information of an object using a sensor apparatus such as a depth camera, may estimate a foreground depth of the object, a background depth of a background, and a degree of transparency of the object, may estimate second depth information of the object based on the estimated foreground depth, background depth, and degree of transparency, and may determine the foreground depth, the background depth, and the degree of transparency through comparison between the measured first depth information and the estimated second depth information.
Abstract:
An apparatus and method for reconstructing a super-resolution three-dimensional (3D) image from a depth image. The apparatus may include an error point relocation processing unit to relocate an error point in a depth image, and a super-resolution processing unit to reconstruct a 3D image by performing a super-resolution with respect to the depth image in which the error point is relocated.
Abstract:
An apparatus and method of correcting an image are provided. The apparatus includes a receiver to receive a depth value and a luminous intensity, the depth value and the luminous intensity being measured by at least one depth sensor, and a correction unit to read a correction depth value of a plurality of correction depth values mapped to different depth values and different luminous intensities from a first storage unit and to correct the measured depth value using the read correction depth value, the correction depth value being mapped to the measured depth value and the measured luminous intensity.