Abstract:
A touch analog front-end (AFE) for a touch sensitive screen may include a transmitter configured to charge a touch panel and a receiver configured to sense the touch panel. The receiver may include a charge-to-voltage (C2V) converter configured to convert a change of capacitance received from the touch panel into a voltage signal, a correlated double sampling (CDS) block configured to convert the voltage signal into a differential signal and to sample each of the positive and the negative signals of the differential signal, and an integrator configured to accumulate a difference between the sampled positive and negative signals.
Abstract:
A touch sensor of multi-driving scheme includes a touch panel including input lines and output lines, the touch panel causes a change in mutual capacitance in response to touch. Processing circuitry generates transmission signals to the input lines as a result of an encoding operation on a first matrix having an inverse matrix, each of the transmission signals has a first polarity or a second polarity opposite in phase to the first polarity; outputs the transmission signals in an unbalanced period when the sum of phases of the transmission signals is greater than 0; receives receiving signals through the output lines; and decodes the receiving signals based on the first matrix, the receiving signals generated by the change in the mutual capacitance in response to the touch.
Abstract:
A touch controller includes a noise detection circuit that respectively provides a first reference voltage and a second reference voltage for detecting display noise to a first electrode and a second electrode arranged on lines except a line on which touch sensing is performed, among sensing electrodes, the second reference voltage being different from the first reference voltage, a driving signal generation circuit that receive a first noise voltage and a second noise voltage generated based on the first reference voltage and the second reference voltage and alternately selects the first noise voltage and the second noise voltage as a driving signal, and a receiving circuit that receives the driving signal, a touch sensing signal generated based on the driving signal from a third electrode arranged on the line on which touch sensing is performed, among the sensing electrodes, and generates a sensing voltage based on the touch sensing signal.
Abstract:
A touch analog front-end (AFE) for a touch sensitive screen may include a transmitter configured to charge a touch panel and a receiver configured to sense the touch panel. The receiver may include a charge-to-voltage (C2V) converter configured to convert a change of capacitance received from the touch panel into a voltage signal, a correlated double sampling (CDS) block configured to convert the voltage signal into a differential signal and to sample each of the positive and the negative signals of the differential signal, and an integrator configured to accumulate a difference between the sampled positive and negative signals.
Abstract:
A touch sensing device may include a touch sensor array including at least one beacon driving section and at least one compensation section, the at least one beacon driving section including a plurality of first touch electrodes, and the at least one compensation section including a plurality of second touch electrodes; and a touch controller connected to the touch sensor array through at least one first driving channel and at least one second driving channel, the touch controller is configured to, during a first uplink period for communication with an active pen, provide at least one beacon signal to the at least one first driving channel, and provide at least one compensation signal to the at least one second driving channel, the at least one compensation signal being an inverse of the at least one beacon signal.
Abstract:
A touch controller includes a noise detection circuit that respectively provides a first reference voltage and a second reference voltage for detecting display noise to a first electrode and a second electrode arranged on lines except a line on which touch sensing is performed, among sensing electrodes, the second reference voltage being different from the first reference voltage, a driving signal generation circuit that receive a first noise voltage and a second noise voltage generated based on the first reference voltage and the second reference voltage and alternately selects the first noise voltage and the second noise voltage as a driving signal, and a receiving circuit that receives the driving signal, a touch sensing signal generated based on the driving signal from a third electrode arranged on the line on which touch sensing is performed, among the sensing electrodes, and generates a sensing voltage based on the touch sensing signal.
Abstract:
Provided are a semiconductor device and a semiconductor system, which can increase immunity against noises through tertiary correlated double sampling (CDS). The semiconductor device includes an amplifier that receives noise and a driving signal, resets for each predetermined period of the driving signal and samples the noise to generate first sampled noise. The first sampled noise includes multiple noise differences each occurring between consecutive reset points. A sampler performs second sampling and third sampling on the first sampled noise and performs fourth sampling on the second and third sampled noises. The first sampled noise includes first to third noise differences, the second sampled noise is a difference between the first and second noise differences, the third sampled noise is a difference between the second and third noise differences, and the fourth sampled noise is a difference between the second and third sampled noises.
Abstract:
A sensing device includes a touch panel including first and second sensor electrodes, and a touch panel controller acquiring a sensing signal from the touch panel and detecting a user input based on the sensing signal. The touch panel controller acquires the sensing signal from at least one of the first sensor electrodes and the second sensor electrodes in a first mode operating at a first power. The touch panel controller selects a first transmitting electrode, a second transmitting electrode, and receiving electrodes from one of the first sensor electrodes and the second sensor electrodes, inputs a first driving signal to the first transmitting electrode, and inputs a second driving signal having a phase difference of 180 degrees with respect to the first driving signal to the second transmitting electrode in a second mode operating at a second power and a third mode in which a sensing operation is performed.
Abstract:
A sensing device includes a touch panel including first and second sensor electrodes, and a touch panel controller acquiring a sensing signal from the touch panel and detecting a user input based on the sensing signal. The touch panel controller acquires the sensing signal from at least one of the first sensor electrodes and the second sensor electrodes in a first mode operating at a first power. The touch panel controller selects a first transmitting electrode, a second transmitting electrode, and receiving electrodes from one of the first sensor electrodes and the second sensor electrodes, inputs a first driving signal to the first transmitting electrode, and inputs a second driving signal having a phase difference of 180 degrees with respect to the first driving signal to the second transmitting electrode in a second mode operating at a second power and a third mode in which a sensing operation is performed.
Abstract:
A sensing device includes a touch panel including first and second sensor electrodes, and a touch panel controller acquiring a sensing signal from the touch panel and detecting a user input based on the sensing signal. The touch panel controller acquires the sensing signal from at least one of the first sensor electrodes and the second sensor electrodes in a first mode operating at a first power. The touch panel controller selects a first transmitting electrode, a second transmitting electrode, and receiving electrodes from one of the first sensor electrodes and the second sensor electrodes, inputs a first driving signal to the first transmitting electrode, and inputs a second driving signal having a phase difference of 180 degrees with respect to the first driving signal to the second transmitting electrode in a second mode operating at a second power and a third mode in which a sensing operation is performed.