Abstract:
Provided is an apparatus and method for managing a power consumption of a transmitter based on energy efficiency in a multiple-input and multiple-output (MIMO) communication system. The transmitter is configured to control a power of at least one of a baseband (BB) component, a radio frequency (RF) chain component, and a power amplifier (PA) component based on calculation of the energy efficiency.
Abstract:
A transmitter configured to support a multimode and a multiband, using radio frequency (RF) digital-to-analog converters (DACs), includes a first RF DAC configured to transmit a first signal in a first frequency band, and a second RF DAC configured to transmit a second signal in a second frequency band different from the first frequency band. The transmitter further includes an impedance controller configured to adjust impedance of one of the first RF DAC and the second RF DAC operating in an impedance matching mode to adjust a frequency range of another one of the first RF DAC and the second RF DAC operating in a data transmission mode.
Abstract:
A method and a device for determining transmission power in a multi-antenna communication system are provided. The method for determining transmission power includes calculating the power consumption of a transmission device, calculating the capacity of the transmission device, and determining transmission power for maximizing the energy efficiency of the transmission device by using the power consumption and the capacity thereof.
Abstract:
An antenna and a communication system with the antenna are provided. The antenna may include a first layer including a plurality of folded stubs, a second layer including a pattern of the folded stubs, and a third layer connected to ground is disposed between the first layer and the second layer.
Abstract:
A communication method and apparatus for cancelling interference are provided. The communication apparatus includes an active element configured to receive a first signal and a parasitic element configured to receive a second signal. A third signal is generated by cancelling interference in the first signal using the second signal.
Abstract:
A method for determining a transmission power in a multi-input multi-output (MIMO) system based on a cooperative transmission is provided. The method includes setting a power constraint condition of a transmitter and target quality information of a receiver. The method further includes determining the transmission power to be allocated to the transmitter to transmit the data to the receiver based on the power constraint condition and the target quality information.
Abstract:
Methods and apparatus for reducing a peak-to-average power ratio (PAPR) of an orthogonal frequency division multiplexing (OFDM) signal in an MIMO-OFDM communication system is provided, in which the method for reducing the PAPR of the OFDM signal may identify interference generated in an MIMO communication system, and adjust a clipping ratio (CR) for an effect of a clipping distortion to be less than an effect of interference.
Abstract:
A method for determining a transmission power in a multi-input multi-output (MIMO) system based on a cooperative transmission is provided. The method includes setting a power constraint condition of a transmitter and target quality information of a receiver. The method further includes determining the transmission power to be allocated to the transmitter to transmit the data to the receiver based on the power constraint condition and the target quality information.
Abstract:
A method and apparatus for user scheduling in a multi-user multiple input multiple output (MIMO) communication system are provided. The method includes identifying a user group comprising user terminals. The method further includes comparing power consumptions based on the user group. The method further includes scheduling the user terminals based on the comparing.
Abstract:
A method and a device for determining transmission power in a multi-antenna communication system are provided. The method for determining transmission power includes calculating the power consumption of a transmission device, calculating the capacity of the transmission device, and determining transmission power for maximizing the energy efficiency of the transmission device by using the power consumption and the capacity thereof.