Abstract:
A method for transmitting control information by a base station in a wireless communication system is provided. The method includes determining a precoder to be applied to a resource and a Demodulation Reference Signal (DMRS) port, the resource being used to transmit the control information, and the DMRS port corresponding to the resource and being used to transmit a DMRS, precoding the resource and the DMRS port by using the determined precoder, and transmitting the control information and the DMRS to a user equipment.
Abstract:
A Channel State Information (CSI) transmission/reception method and an apparatus for transmitting/receiving CSI efficiently in a Coordinated Multi-Point (CoMP) communication system are provided. The CSI transmission method of a terminal for receiving Joint Transmission (JT) from a first Transmission Point (TP) and a second TP includes receiving a first CSI Reference Signal (CSI-RS) corresponding to the first TP, receiving a second CSI-RS corresponding to the second TP, generating an aggregated CSI corresponding to the first and second CSI-RSs, and transmitting the aggregated CSI, wherein generating an aggregated CSI comprising creating the aggregated CSI with a transmission timing of the aggregated CSI. The CSI transmission/reception method and apparatus is capable of transmission CSI efficiently in the CoMP system.
Abstract:
A Channel State Information (CSI) feedback method and apparatus is provided for transmitting, at a base station, the CSIs for plural transmit antennas with a limited amount resource and receiving, at a mobile station, the CSIs efficiently in a massive Multiple Input Multiple Output (MIMO) system operating in the Frequency Division Duplex (FDD) mode.
Abstract:
A method of operating a wireless communication device for correcting an offset between a base station and the wireless communication device includes determining whether to perform offset correction using a first target synchronization signal block (SSB) to generate a determination result in response to changing a selected reception beam from a first reception beam to a second reception beam in an SSB period, the first target SSB being received via the second reception beam, and performing the offset correction on the second reception beam using at least one first neighbor SSB based on the determination result, the at least one first neighbor SSB being received via the first reception beam.
Abstract:
A channel transmission/reception method and an apparatus for transmitting/receiving channels between a base station and a mobile terminal efficiently in a mobile communication supporting massive Multiple Input Multiple Output (MIMO) transmission are provided. The method includes determining a resource to which a Demodulation Reference Signal (DMRS) addressed to a terminal is mapped within a resource block, the DMRS resource being positioned in at least one of a first resource set capable of being allocated for DMRS and a second resource set symmetric with the first resource set on a time axis, and transmitting the DMRS and DMRS allocation information to the terminal.
Abstract:
A channel transmission/reception method and an apparatus for transmitting/receiving channels between a base station and a mobile terminal efficiently in a mobile communication supporting massive Multiple Input Multiple Output (MIMO) transmission are provided. The method includes determining a resource to which a Demodulation Reference Signal (DMRS) addressed to a terminal is mapped within a resource block, the DMRS resource being positioned in at least one of a first resource set capable of being allocated for DMRS and a second resource set symmetric with the first resource set on a time axis, and transmitting the DMRS and DMRS allocation information to the terminal.
Abstract:
A Channel State Information (CSI) transmission/reception method and an apparatus for transmitting/receiving CSI efficiently in a Coordinated Multi-Point (CoMP) communication system are provided. The CSI transmission method of a terminal for receiving Joint Transmission (JT) from a first Transmission Point (TP) and a second TP includes receiving a first CSI Reference Signal (CSI-RS) corresponding to the first TP, receiving a second CSI-RS corresponding to the second TP, generating an aggregated CSI corresponding to the first and second CSI-RSs, and transmitting the aggregated CSI, wherein generating an aggregated CSI comprising creating the aggregated CSI with a transmission timing of the aggregated CSI. The CSI transmission/reception method and apparatus is capable of transmission CSI efficiently in the CoMP system.
Abstract:
Methods and apparatuses are provided for transmitting channel information, by a UE. Information for at least one first type CSI-RS and information for at least one second type CSI-RS are identified. First channel information is generated based on a first type CSI-RS and a second type CSI-RS, among the at least one first type CSI-RS and the at least one second type CSI-RS. The first channel information is reported by PUCCH-based periodic channel information feedback. If a PDCCH including an indicator is received, second channel information is generated based on the first type CSI-RS and the second type CSI-RS. The second channel information is reported through a PUSCH. The indicator triggers a channel information report associated with the first type CSI-RS and the second type CSI-RS, among the at least one first type CSI-RS and the at least one second type CSI-RS.
Abstract:
In legacy systems such as 3rd Generation Partnership Project (3GPP) releases 8 to 10, the control channel is transmitted using the first few Orthogonal Frequency Division Multiplexing (OFDM) symbols in a subframe. The limited control channel capacity will impact the system performance in future releases as more and more User Equipments (UEs) will be scheduled in a subframe with technologies such as MulitUser-Multiple Input Multiple Output (MU-MIMO) and Coordinated Multipoint (CoMP) transmission being enhanced or introduced. A new Enhanced Control CHannel (E-CCH) is necessary to be designed, which will use the resource in the Physical Downlink Shared CHannel (PDSCH) in the legacy systems. The E-CCH will support UE-specific DeModulation Reference Signal (DMRS) based transmission and receiving. However, the configuration of DMRS for E-CCH is necessary to be known to UE in prior. This invention discloses multiple methods in which DMRS is configured for E-CCHs and respective eNB and UE behaviors.
Abstract:
In legacy systems such as 3rd Generation Partnership Project (3GPP) releases 8 to 10, the control channel is transmitted using the first few Orthogonal Frequency Division Multiplexing (OFDM) symbols in a subframe. The limited control channel capacity will impact the system performance in future releases as more and more User Equipments (UEs) will be scheduled in a subframe with technologies such as MulitUser-Multiple Input Multiple Output (MU-MIMO) and Coordinated Multipoint (CoMP) transmission being enhanced or introduced. A new Enhanced Control CHannel (E-CCH) is necessary to be designed, which will use the resource in the Physical Downlink Shared CHannel (PDSCH) in the legacy systems. The E-CCH will support UE-specific DeModulation Reference Signal (DMRS) based transmission and receiving. However, the configuration of DMRS for E-CCH is necessary to be known to UE in prior. This invention discloses multiple methods in which DMRS is configured for E-CCHs and respective eNB and UE behaviors.