Abstract:
An optical film includes a polarization film including a polymer resin and a dichroic dye, and a phase delay layer disposed on the polarization film and including a liquid crystal.
Abstract:
A compensation film includes a first retardation layer including a polymer having negative birefringence, and a second retardation layer including a liquid crystal having positive birefringence, where the first retardation layer has an in-plane retardation (Re1) of 320 nm to 1050 nm for incident light having wavelength of 550 nm, the second retardation layer has an in-plane retardation (Re2) of 180 nm to 910 nm for the incident light, an entire in-plane retardation (Re0) of the first and second retardation layers for the incident light is a difference between the in-plane retardations of the first and second retardation layers, an angle between slow axes of the first and second retardation layers is 85 to 95 degrees, and the entire in-plane retardation (Re0) of the first and second retardation layers for the wavelength of 450 nm, 550 nm and 650 nm satisfies Re0 (450 nm)
Abstract:
A composition for a polarizing film including a polymer, a first dichroic dye having a maximum absorption wavelength (λmax) of about 400 nm to about 780 nm, and an ultraviolet (UV) absorber or a second dichroic dye having a maximum absorption wavelength (λmax) of about less than 400 nm.
Abstract:
A compensation film includes: a first retardation layer including a polymer; a second retardation layer including a liquid crystal having positive birefringence; and a compensation layer including a liquid crystal having a vertical alignment property, where an angle between slow axes of the first and second retardation layers is in a range of about 85 to about 95 degrees, an entire in-plane retardation (Re0) of the first retardation layer, the second retardation layer and the compensation layer for wavelengths of 450 nm, 550 nm and 650 nm satisfy the following inequation: Re0(450 nm)
Abstract:
An optical film includes: a liquid crystal coating; and a base layer on the liquid crystal coating, wherein the liquid crystal coating has reversed wavelength dispersion and in-plane retardation for a reference wavelength ranging from 126 nm to 153 nm, and the base layer has in-plane retardation ranging from about 0 to about 50 nm and out-of-plane retardation ranging from about 0 nm to about 100 nm.
Abstract:
A compensation film includes a first retardation layer comprising a polymer having negative birefringence, and a second retardation layer comprising a polymer having negative birefringence, where the first retardation layer has an in-plane retardation (Re1) in a range of about 180 nanometers to about 300 nanometers for incident light having a wavelength of about 550 nanometers, the second retardation layer has an in-plane retardation (Re2) in a range of about 60 nanometers to about 170 nanometers for the incident light having the wavelength of about 550 nanometers, and the entire in-plane retardation (Re0) of the first retardation layer and the second retardation layer for incident light having wavelengths of about 450 nanometers and about 550 nanometers satisfies the following inequation: Re0(450 nm)
Abstract:
An optical film including a polymer including a repeating unit A including a repeating unit represented by the following Chemical Formulas 1 to 3, or a combination thereof; and a repeating unit B derived from a monomer having an unsaturated bond copolymerizable with the repeating unit A, wherein the optical film has a short wavelength dispersion of an in-plane phase-difference value (Re) (450 nm/550 nm) ranging from about 0.81 to about 1.20, and a long wavelength dispersion of an in-plane phase-difference value (Re) (650 nm/550 nm) ranging from about 0.90 to about 1.18: wherein, in Chemical Formulas 1 to 3, the variables R1 to R21 are defined herein.
Abstract:
An optical film includes a polarization film including a polymer resin and a dichroic dye, and a phase delay layer disposed on the polarization film and including a liquid crystal.
Abstract:
A composition for a polarizing film including a polyolefin and a dichroic dye represented by Chemical Formula 1: wherein, in Chemical Formula 1, Ar1 to Ar3, R1, R2, and n are defined in the detailed description.
Abstract:
An embodiment of an optical film includes: a polarization layer; a first phase retardation layer; a second phase retardation layer; and a light blocking layer disposed between the first phase retardation layer and the second phase retardation layer and extending along a circumference of the second phase retardation layer, wherein the polarization layer is disposed on the first phase retardation, the first phase retardation layer is disposed on the second phase retardation layer, an in-plane retardation value of the first phase retardation layer at a standard wavelength of about 550 nanometers is in a range from about 240 nanometers to about 300 nanometers, and an in-plane retardation value of the second phase retardation layer at the standard wavelength is in a range from about 110 nanometers to about 160 nanometers.