Abstract:
A semiconductor nanoparticle, including silver, a Group 13 metal, and a chalcogen element, wherein the semiconductor nanoparticle emits a first light, the Group 13 metal includes gallium, and optionally further includes indium, aluminum, or a combination thereof, the chalcogen element includes sulfur, and optionally further includes selenium, the first light has a full width at half maximum of greater than or equal to about 5 nanometers (nm) to less than or equal to about 70 nm, the first light has a maximum emission wavelength of greater than or equal to about 500 nm to less than or equal to about 600 nm, the semiconductor nanoparticle has a quantum yield of greater than or equal to about 50%, a mole ratio of gallium to sulfur is greater than or equal to about 0.1:1 to less than or equal to about 1:1, and a charge balance value defined by Equation 1 herein.
Abstract:
A separator for a rechargeable lithium battery includes a substrate and a heat-resistant porous layer on at least one side of the substrate. The heat-resistant porous layer includes a crosslinked binder. The crosslinked binder has a cross-linked structure of a crosslinkable compound including a siloxane compound. The siloxane compound includes a siloxane resin including a unit represented by the chemical formula R1SiO3/2, where R1 is a curable reactive group, or an organic group having a curable reactive group.
Abstract:
A method of manufacturing a semiconductor nanoparticle, the semiconductor nanoparticle manufactured therefrom, and an electronic device including the semiconductor nanoparticle. The method of manufacturing the semiconductor nanoparticle includes combining a first semiconductor nanocrystal that includes silver, a Group 13 element, and a chalcogen element, with a gallium precursor, a sulfur precursor, and a silver compound in a medium including an organic solvent; and heating the medium to a reaction temperature to obtain a crude solution including the semiconductor nanoparticles. The semiconductor nanoparticle includes silver, indium, gallium, and sulfur, and the size is greater than or equal to about 2 nm and less than or equal to about 50 nm.
Abstract:
A separator for a rechargeable lithium battery and a rechargeable lithium battery, the separator including a substrate, and a heat-resistant porous layer on at least one side of the substrate, the heat-resistant porous layer including an imide-based copolymer, wherein the imide-based copolymer includes a first repeating unit represented by Chemical Formula 1 and a second repeating unit represented by Chemical Formula 2:
Abstract:
A semiconductor nanoparticle, a method of manufacturing the semiconductor nanoparticle, and an electronic device including the nanoparticle are provided. The semiconductor nanoparticle includes silver, indium, gallium, and sulfur, wherein the semiconductor nanoparticle is configured to emit a green light, wherein the semiconductor nanoparticle has a relative mole value of zinc as defined by Equation 1 that is greater than or equal to about 0.25 and less than or equal to about 0.9: Relative mole value of zinc = [ Zn ] / ( [ Ag ] + [ In ] + [ Ga ] + [ Zn ] ) Equation 1 wherein, in Equation 1, [Ag], [In], [Ga], and [Zn] are molar amounts of the silver, the indium, the gallium, and the zinc in the semiconductor nanoparticle, respectively, and wherein a mole ratio of gallium to indium is greater than about 2.5:1 and less than about 5.6:1.
Abstract:
A color conversion panel, comprising a color conversion layer comprising a color conversion region and optionally a partition wall defining each region of the color conversion layer, wherein the color conversion region comprises a first region corresponding to a first pixel, the first region comprises a first composite, the first composite comprises a matrix and a semiconductor nanoparticle, wherein the semiconductor nanoparticle is dispersed in the matrix, the semiconductor nanoparticle comprises silver, a Group 13 metal, zinc, and a chalcogen element, the semiconductor nanoparticle emits a first light, the Group 13 metal is indium, gallium, aluminum, or a combination thereof, the chalcogen element is sulfur, selenium, or a combination thereof, and in the semiconductor nanoparticle, a mole ratio of zinc to a total sum of silver, Group 13 metal, and zinc is greater than or equal to about 0.01:1.
Abstract:
A semiconductor nanoparticle, and a method for producing the semiconductor nanoparticle, and a composite, a color conversion panel, and a display panel including the semiconductor nanoparticle. The semiconductor nanoparticle includes silver, a Group 13 metal including indium and gallium, and a chalcogen element including sulfur and optionally selenium, the semiconductor nanoparticle is configured to emit a green light with an emission peak wavelength of 500 nanometers to 580 nanometers, and a full width at half maximum of about 5 nm to about 70 nm. The semiconductor nanoparticle exhibits a quantum yield of greater than or equal to about 50%, and includes a mole ratio (In+Ga):Ag of about 1:1 to about 3.5:1.
Abstract:
A separator for a rechargeable lithium battery and a rechargeable lithium battery including the separator, the separator including a substrate, and a heat-resistant porous layer on at least one side of the substrate, the heat-resistant porous layer including a composite particle, wherein the composite particle includes a first particle and a second particle attached to a surface of the first particle, and the first particle is different from the second particle, and at least one of the first particle and the second particle includes an organic material.
Abstract:
A separator for a rechargeable lithium battery and a rechargeable lithium battery including the same, the separator including a substrate, and a heat-resistant porous layer on at least one side of the substrate, the heat-resistant porous layer including a crosslinked binder and a non-crosslinked binder, wherein the crosslinked binder has a cross-linked structure of at least one crosslinkable compound, the at least one crosslinkable compound including a multi-functional urethane-based compound, and the crosslinked binder and the non-crosslinked binder are included in a weight ratio of about 3:7 to about 8:2.
Abstract:
A semiconductor nanoparticle including a first semiconductor nanocrystal including silver, indium, gallium, and sulfur, and a semiconductor nanoparticle including a second semiconductor nanocrystal including zinc, gallium, and sulfur, a method of manufacturing the same, and an electronic device including the same. The semiconductor nanoparticle is configured to emit a green light. The green light has a peak emission wavelength of about 500 nanometers to about 580 nanometers. In the semiconductor nanoparticle, a molar ratio of zinc to indium is about 0.1:1 to about 10:1.