Abstract:
Disclosed are a quantum dot and a quantum dot-polymer composite and a device including the same, wherein the quantum dot includes a semiconductor nanocrystal core including indium (In) and phosphorous (P), a first semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core, the first semiconductor nanocrystal shell including zinc and selenium, and a second semiconductor nanocrystal shell disposed on the first semiconductor nanocrystal shell, the second semiconductor nanocrystal shell including zinc and sulfur, wherein the quantum dot does not include cadmium, wherein in the quantum dot, a mole ratio of sulfur with respect to selenium is less than or equal to about 2.5:1.
Abstract:
A quantum dot including a first ligand and a second ligand on a surface of the quantum dot, a composition or composite including the same, and a device including the same. The first ligand includes a compound represented by Chemical Formula 1 and the second ligand includes a compound represented by Chemical Formula 2: MAn Chemical Formula 1 wherein M, n, and A are the same as defined in the specification; and wherein, R1, L1, Y1, R, k1, and k2 are the same as defined in the specification.
Abstract:
A quantum dot including a first ligand and a second ligand on a surface of the quantum dot, a composition or composite including the same, and a device including the same. The first ligand includes a compound represented by Chemical Formula 1 and the second ligand includes a compound represented by Chemical Formula 2: MAn Chemical Formula 1 wherein M, n, and A are the same as defined in the specification; and wherein, R1, L1, Y1, R, k1, and k2 are the same as defined in the specification.
Abstract:
A barrier film comprising: a substrate; a first layer disposed on the substrate and comprising an oxidation product of polysilazane; and a second layer disposed directly on the first layer and comprising a thiol-ene polymer, wherein the polysilazane comprises a repeating unit represented by Chemical Formula 1, wherein R1 and R2 are each independently hydrogen, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an alkylsilyl group, an alkylamino group, an alkoxy group, or an aromatic hydrocarbon group, and wherein the thiol-ene polymer is a polymerization product of a monomer combination including a first monomer having at least two thiol groups at its terminal end and a second monomer having at least two carbon-carbon unsaturated bond-containing groups at its terminal end.
Abstract:
A barrier coating composition including: a monomer combination including a first monomer having at least two thiol groups at its terminal end and a second monomer having at least two carbon-carbon unsaturated bond-containing groups at its terminal end; and a plurality of organo-modified clay particles dispersed in the monomer combination, wherein the organo-modified clay particles include a compound having a hydrocarbyl group linked to a heteroatom, and wherein the compound is a primary, secondary, or tertiary amine, a quaternary organoammonium salt, a primary, secondary, or tertiary phosphine, a quaternary organophosphonium salt, a thiol including an amine group, or a combination thereof.
Abstract:
A method of manufacturing a semiconductor nanoparticle, the semiconductor nanoparticle manufactured therefrom, and an electronic device including the semiconductor nanoparticle. The method of manufacturing the semiconductor nanoparticle includes combining a first semiconductor nanocrystal that includes silver, a Group 13 element, and a chalcogen element, with a gallium precursor, a sulfur precursor, and a silver compound in a medium including an organic solvent; and heating the medium to a reaction temperature to obtain a crude solution including the semiconductor nanoparticles. The semiconductor nanoparticle includes silver, indium, gallium, and sulfur, and the size is greater than or equal to about 2 nm and less than or equal to about 50 nm.
Abstract:
A cadmium-free, core shell quantum dot, a quantum dot polymer composite, and electronic devices including the quantum dot polymer composite. The core shell quantum dot has an extinction coefficient per gram of greater than or equal to 0.3, an ultraviolet-visible absorption spectrum curve that has a positive differential coefficient value at 450 nm, wherein the core shell quantum dot includes a semiconductor nanocrystal core including indium and phosphorus, and optionally zinc, and a semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core, the shell including zinc, selenium, and sulfur, wherein the core shell quantum dot has a quantum efficiency of greater than or equal to about 80%, and is configured to emit green light upon excitation.
Abstract:
A quantum dot, a quantum dot composite including the quantum dot, a display panel including the quantum dot composite, and an electronic device including the display panel are provided. The quantum dot includes indium, zinc, phosphorus, and selenium, and does not include cadmium, and has an optical density (OD) per 1 mg for a wavelength of 450 nm of from about 0.2 to about 0.27 and an emission peak of from about 500 nm to about 550 nm, or an optical density per 1 mg for a wavelength of about 450 nm of from about 0.5 to about 0.7 and an emission peak of from about 610 nm to about 660 nm.
Abstract:
A cadmium free quantum dot not including cadmium and including: a semiconductor nanocrystal core comprising indium and phosphorous, a first semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core and comprising zinc and selenium, and a second semiconductor nanocrystal shell disposed on the first semiconductor nanocrystal shell and comprising zinc and sulfur, a composition and composite including the same, and an electronic device.
Abstract:
A photosensitive composition including: a plurality of quantum dots, wherein the quantum dot includes an organic ligand bound to a surface of the quantum dot; a photoinitiator; a binder including a carboxylic acid group; a photopolymerizable monomer having a carbon-carbon double bond; and a solvent, wherein the photoinitiator includes a first photoinitiator including an oxime compound and a second photoinitiator including at least one selected from a phosphine oxide compound and an amino ketone compound.