Abstract:
Disclosed herein are a photoacoustic imaging apparatus to project a continuous-wave laser beam onto an object to generate a photoacoustic image, and a method of controlling the same.The photoacoustic imaging apparatus include a laser source to generate a continuous-wave (CW) laser beam, a deflection mirror to reflect the CW laser beam to the object while rotating, a transducer to collect acoustic waves generated in the object by the CW laser beam, and an image processor to generate a photoacoustic image based on the collected acoustic waves.
Abstract:
Disclosed herein are an ultrasonic imaging apparatus which is capable of accurately and quickly estimating a Point Spread Function (PSF) is usable for restoring ultrasonic images, and a control method which is executable by the ultrasonic imaging apparatus. The ultrasonic imaging apparatus includes: a probe; a receive beamformer configured to beamform an ultrasonic signal and to output the beamformed ultrasonic signal; a Point Spread Function (PSF) database configured to store a PSF which is acquired based on a situational variable, and a phase parameter which is determined based on the situational variable, for the beamformed ultrasonic signal; and an image generator configured to select the PSF and the phase parameter from the PSF database based on the beamformed ultrasonic signal, and to perform deconvolution using an estimated PSF based on the selected PSF and the selected phase parameter in order to generate an image.
Abstract:
Disclosed herein is a beamformer that performs beamforming, including a weight computation processor configured to compute a covariance of a conversion signal which is obtainable by converting an input signal using at least one conversion function, approximate the computed covariance to a Toeplitz matrix form, and compute a conversion signal weight that is a weight for the conversion signal based on the approximation result, and a synthesizer configured to generate an output signal using the conversion signal weight computed by the weight computation processor.
Abstract:
A medical image processing apparatus includes a weight applier configured to, when a difference between a first imaginary component of a first frame image and a second imaginary component of a second frame image, the second frame image being adjacent to the first frame image, is less than or equal to a first threshold value, apply a first weight to the second imaginary component to increase the difference; and an image generator configured to generate a movement-amplified image based on the first frame image and the second frame image to which the first weight is applied so that a movement of interest corresponding to the increased difference is amplified.
Abstract:
Disclosed herein are an ultrasonic imaging apparatus and an image display method thereof. The ultrasonic imaging apparatus includes an ultrasonic probe configured to transmit ultrasonic signals toward an object and to receive ultrasonic signals reflected by the object, a beamformer configured to perform beamforming based on the ultrasonic signals received by the ultrasonic probe, and an image processor configured to generate an ultrasonic image of an examined region within the object based on the beamforming, to extract characteristic information which relates to the examined region from the generated ultrasonic image, and to judge whether or not the examined region coincides with a target region based on the extracted characteristic information, thus facilitating a determination as to with which region within the object the examined region corresponds based on various pieces of the characteristic information of the examined region extracted via analysis of the ultrasonic image.
Abstract:
A method of processing an image, including estimating a point spread function (PSF) of an acquired image, and performing image restoration on the acquired image using the estimated PSF based on a generalized Gaussian model using inverse filter frequency domain so as to perform image restoration at high speed and to prevent a halo effect. The method provides high speed processing while preventing a halo effect. The apparatus includes an ultrasonic imaging apparatus including: an ultrasonic probe to irradiate an object with ultrasonic waves and to receive ultrasonic echo waves reflected from the object; a beamformer configured to perform beam forming based on the ultrasonic echo waves received by the ultrasonic probe; an image restorer configured to restore the image beam formed by the beamformer based on a generalized Gaussian model; and an postprocessor configured to suppress noise and aliasing which are produced in the process of restoring the image.
Abstract:
Disclosed herein are a beamforming method, a method of determining a beamforming coefficient, and an ultrasonic imaging apparatus. The beamforming method includes radiating a target object with ultrasonic waves and receiving a plurality of ultrasonic signals reflected from the target object, acquiring beamforming computation results of some of the plurality of received ultrasonic signals and determining a beamforming coefficient candidate group based on a beamforming computation result of the some of the received ultrasonic signals, acquiring beamforming computation results of the plurality of received ultrasonic signals or the some of the received ultrasonic signals by applying beamforming coefficients of the beamforming coefficient candidate group and selecting at least one beamforming coefficient from the beamforming coefficient candidate group based on the beamforming computation results of the plurality of ultrasonic signals, and beamforming the plurality of ultrasonic signals using the selected at least one beamforming coefficient as a weight.
Abstract:
An image processing module includes a beamforming unit configured to provide a beamformed signal based on an input signal; a point spread function (PSF) database comprising at least one two-dimensional point spread function obtained based on at least one situational variable of the beamformed signal; and an image generation unit configured to select at least one two-dimensional point spread function from the point spread function database and perform deconvolution using the beamformed signal and the selected at least one two-dimensional point spread function to generate an image of a target portion of an object.
Abstract:
Ultrasonic imaging method includes sequentially emitting by each transducer group of respective regions, into which transducers are divided, focused ultrasonic pulses to a focal point of an object; sequentially acquiring, by each transducer group, ultrasonic echo signals from the focal point based on the emitted ultrasonic pulses; calculating a normal vector of a surface of the object using emission directions of the focused ultrasonic pulses and intensities of the ultrasonic echo signals in correspondence to the focused ultrasonic pulses emitted by three of the transducer groups; calculating an attenuation rate of the ultrasonic echo signals using the normal vector and the emission directions of the focused ultrasonic pulses emitted by the three of the transducer groups, and correcting the ultrasonic echo signals based on the attenuation rate; beamforming the ultrasonic echo signals, an attenuation of which has been corrected, into ultrasonic image signals to be output as an ultrasonic image.
Abstract:
In accordance with one aspect of the present disclosure, an ultrasound imaging apparatus comprising: an ultrasonic probe for transmitting ultrasonic waves to a target object and receiving ultrasonic waves reflected from the object; a beamforming unit for beamforming the received ultrasonic wave and outputting a beamforming signal; a sampling unit for adjusting the number of sampling times of the beamforming signal according to the amount of motion of the object; and an image processing unit for matching and synthesizing the sampled signals.