Abstract:
In a defect inspection method, first and second inspection conditions having a first sensitivity of detection signal and having a second sensitivity of a detection signal for a defect of interest (DOI), respectively, are determined. The first and second sensitivities are different. First and second images of the same detection region on a substrate surface under the first and second inspection conditions respectively, are obtained. The first and second images are matched to detect a defect in the detection region.
Abstract:
A broadband light source includes a first electrodeless lamp to generate first broadband light from plasma, a first elliptical reflector having first and second focuses, the first elliptical reflector enclosing a rear portion of the first electrodeless lamp positioned at the first focus of the first elliptical reflector such that the first broadband light is reflected from the first elliptical reflector toward a light collector as a collective light, a symmetrically curved reflector having a third focus, the symmetrically curved reflector positioned such that the third focus is coincident with one of the first and second focuses, and a laser irradiator to provide a laser beam to the first electrodeless lamp.
Abstract:
Spectral ellipsometry measurement systems are provided including a polarizer that rotates at a first angle and adjusts a polarizing direction of incident light of a measurement sample; a compensator that rotates at a second angle, different from the first angle, and adjusts a phase difference of the incident light; an analyzer that rotates at a third angle and adjusts a polarizing direction of light reflected on the measurement sample; a detector that detects a spectral image from the reflected light; a controller that controls one of the polarizer, the compensator, and the analyzer according to polarizer-compensator-analyzer (PCA) angle sets including the first to third angles; and a processor that receives, from the detector, a first spectral image corresponding to a first PCA angle set and a first wavelength and a second spectral image corresponding to a second PCA angle set and a second wavelength, different from the first wavelength, and generates a polarizer-compensator-analyzer rotating (PCAR) spectral matrix using the first and second spectral images.
Abstract:
In a defect inspection method, first and second inspection conditions having a first sensitivity of detection signal and having a second sensitivity of a detection signal for a defect of interest (DOI), respectively, are determined. The first and second sensitivities are different. First and second images of the same detection region on a substrate surface under the first and second inspection conditions respectively, are obtained. The first and second images are matched to detect a defect in the detection region.
Abstract:
Spectral ellipsometry measurement systems are provided including a polarizer that rotates at a first angle and adjusts a polarizing direction of incident light of a measurement sample; a compensator that rotates at a second angle, different from the first angle, and adjusts a phase difference of the incident light; an analyzer that rotates at a third angle and adjusts a polarizing direction of light reflected on the measurement sample; a detector that detects a spectral image from the reflected light; a controller that controls one of the polarizer, the compensator, and the analyzer according to polarizer-compensator-analyzer (PCA) angle sets including the first to third angles; and a processor that receives, from the detector, a first spectral image corresponding to a first PCA angle set and a first wavelength and a second spectral image corresponding to a second PCA angle set and a second wavelength, different from the first wavelength, and generates a polarizer-compensator-analyzer rotating (PCAR) spectral matrix using the first and second spectral images.
Abstract:
An apparatus and a system for measuring the thickness of a thin film are provided. The apparatus includes a signal detector, a Fast Fourier Transform (FFT) generator, an Inverse Fast Fourier Transform (IFFT) generator, and a thickness analyzer. The signal detector detects an electric field signal with respect to a reflected light that is reflected from a thin film. The FFT generator performs FFT with respect to the electric field signal to separate a DC component from an AC component of the electric field signal. The IFFT generator receives the separated AC component of the electric field signal, performs IFFT with respect to the AC component, and extracts a phase value of the AC component. The thickness analyzer measures the thickness of the thin film using the extracted phase value.