Abstract:
A spatial image having 2D spatial information is obtained from a surface of a sample by an image creating method. The surface of the sample is milled to obtain an elemental image having material information from the milled surface. The spatial image and the elemental image are composed to form a 2D spatial/elemental image.
Abstract:
In a method of detecting a defect of a substrate, a first light having a first intensity may be irradiated to a first region of the substrate through a first aperture. A defect in the first region may be detected using a first reflected light from the first region. A second light having a second intensity may be irradiated to a second region of the substrate through a second aperture. A defect in the second region may be detected using a second reflected light from the second region. Thus, the defects by the regions of the substrate may be accurately detected.
Abstract:
In a defect inspection method, first and second inspection conditions having a first sensitivity of detection signal and having a second sensitivity of a detection signal for a defect of interest (DOI), respectively, are determined. The first and second sensitivities are different. First and second images of the same detection region on a substrate surface under the first and second inspection conditions respectively, are obtained. The first and second images are matched to detect a defect in the detection region.
Abstract:
In a defect inspection method, first and second inspection conditions having a first sensitivity of detection signal and having a second sensitivity of a detection signal for a defect of interest (DOI), respectively, are determined. The first and second sensitivities are different. First and second images of the same detection region on a substrate surface under the first and second inspection conditions respectively, are obtained. The first and second images are matched to detect a defect in the detection region.
Abstract:
An optical transformation module includes a light generator generating a parallel light beam to be incident onto a surface of an inspection object and changing a wavelength of the parallel light beam, and a rotating grating positioned on a path of the parallel light beam and rotatable by a predetermined rotation angle such that the parallel light beam is transformed according to the wavelength of the parallel light beam and the rotation angle of the rotating grating to have a desired incidence angle and a desired incidence position onto the surface of the inspection object.
Abstract:
An apparatus and method of forming an epitaxial layer are provided. The apparatus includes a process chamber in which an epitaxial process is performed to form epitaxial layer on a substrate. A first supplier supplies source gases for the epitaxial layer into the process chamber. A second supplier supplies dopants into the process chamber. A detector detects a composition ratio of the epitaxial layer and a concentration of the dopants in the epitaxial layer during the epitaxial growth process. And a controller controls a mass flow of at least one of the source gases and a mass flow of the dopants in-line with the epitaxial growth process. Accordingly, the layer thickness of the epitaxial layer can be accurately controlled in real time in line with the epitaxial process.
Abstract:
Spectral ellipsometry measurement systems are provided including a polarizer that rotates at a first angle and adjusts a polarizing direction of incident light of a measurement sample; a compensator that rotates at a second angle, different from the first angle, and adjusts a phase difference of the incident light; an analyzer that rotates at a third angle and adjusts a polarizing direction of light reflected on the measurement sample; a detector that detects a spectral image from the reflected light; a controller that controls one of the polarizer, the compensator, and the analyzer according to polarizer-compensator-analyzer (PCA) angle sets including the first to third angles; and a processor that receives, from the detector, a first spectral image corresponding to a first PCA angle set and a first wavelength and a second spectral image corresponding to a second PCA angle set and a second wavelength, different from the first wavelength, and generates a polarizer-compensator-analyzer rotating (PCAR) spectral matrix using the first and second spectral images.
Abstract:
An apparatus and a system for measuring the thickness of a thin film are provided. The apparatus includes a signal detector, a Fast Fourier Transform (FFT) generator, an Inverse Fast Fourier Transform (IFFT) generator, and a thickness analyzer. The signal detector detects an electric field signal with respect to a reflected light that is reflected from a thin film. The FFT generator performs FFT with respect to the electric field signal to separate a DC component from an AC component of the electric field signal. The IFFT generator receives the separated AC component of the electric field signal, performs IFFT with respect to the AC component, and extracts a phase value of the AC component. The thickness analyzer measures the thickness of the thin film using the extracted phase value.
Abstract:
Microelectronic substrate inspection equipment includes a gas container which contains helium gas, a helium ion generator which is disposed in the gas container and converts the helium gas into helium ions and a wafer stage which is disposed under the gas container and on which a substrate to be inspected is placed. The equipment further includes a secondary electron detector which is disposed above the wafer stage and detects electrons generated from the substrate, a compressor which receives first gaseous nitrogen from a continuous nitrogen supply device and compresses the received first gaseous nitrogen into liquid nitrogen, a liquid nitrogen dewar which is connected to the compressor and stores the liquid nitrogen, and a cooling device that is coupled to the helium ion generator. The cooling device is disposed on the gas container, and cools the helium ion generator by vaporizing the liquid nitrogen received from the liquid nitrogen dewar into second gaseous nitrogen. Related methods are also disclosed.
Abstract:
Provided is a hyperspectral imaging (HSI)-based inspection apparatus capable of quickly and stably performing two-dimensional (2D) HSI for an inspection object, and accordingly, capable of quickly and accurately inspecting the inspection object. The HSI-based inspection apparatus includes: a stage on which an inspection object is arranged; an optical system configured to allow light to be incident on the inspection object and emit the light reflected from the inspection object; a scan mirror configured to reflect the emitted light from the optical system while rotating; and a hyperspectral camera configured to obtain an image having a wavelength direction and a line direction as two axes for light reflected from the scan mirror, wherein, by using the rotation of the scan mirror, the hyperspectral camera is configured to perform the 2D HSI for the inspection object.