Abstract:
A defect detecting method includes generating an actual image of a pattern on a sample based on irradiation of an electron beam onto the sample, performing a contrast conversion of the actual image to generate a conversion image representing a normal pattern, matching the conversion image and a design image for the pattern, and detecting a defective pattern in the actual image based on matching of the conversion image and the design image. The contrast conversion may be performed for gray levels of pixels in the actual image.
Abstract:
A method of inspecting a resistive defect of a semiconductor device is provided. The method includes loading a semiconductor wafer on a wafer stocker, transferring the semiconductor wafer into a laser anneal module, annealing a portion of the semiconductor wafer using a laser beam in an atmospheric pressure, transferring the annealed semiconductor wafer into an E-beam scanning module in a vacuum, scanning the annealed portions of the semiconductor wafer with an E-beam, and collecting secondary electrons emitted from the annealed portions of the semiconductor wafer.
Abstract:
An apparatus and a system for measuring the thickness of a thin film are provided. The apparatus includes a signal detector, a Fast Fourier Transform (FFT) generator, an Inverse Fast Fourier Transform (IFFT) generator, and a thickness analyzer. The signal detector detects an electric field signal with respect to a reflected light that is reflected from a thin film. The FFT generator performs FFT with respect to the electric field signal to separate a DC component from an AC component of the electric field signal. The IFFT generator receives the separated AC component of the electric field signal, performs IFFT with respect to the AC component, and extracts a phase value of the AC component. The thickness analyzer measures the thickness of the thin film using the extracted phase value.
Abstract:
An optical transformation module includes a light generator generating a parallel light beam to be incident onto a surface of an inspection object and changing a wavelength of the parallel light beam, and a rotating grating positioned on a path of the parallel light beam and rotatable by a predetermined rotation angle such that the parallel light beam is transformed according to the wavelength of the parallel light beam and the rotation angle of the rotating grating to have a desired incidence angle and a desired incidence position onto the surface of the inspection object.
Abstract:
An optical measuring method includes generating a Bessel beam, filtering the Bessel beam to generate a focused Bessel beam, vertically irradiating the focused Bessel beam onto a substrate in which an opening is formed, and detecting light reflected from the substrate to obtain an image of a bottom surface of the opening.
Abstract:
A wafer inspection apparatus including a derivation unit configured to derive a first polar coordinate set and a second polar coordinate set using a latin hypercube sampling, the first and second polar coordinate sets not overlapping each other, an inspection unit configured to perform defect inspections of a plurality of wafers using the first and second polar coordinate sets, a support unit configured to support the wafers, and an calculation unit configured to combine a defect inspection result using the first polar coordinate set with a defect inspection result using the second polar coordinate set may be provided.
Abstract:
An apparatus and method of forming an epitaxial layer are provided. The apparatus includes a process chamber in which an epitaxial process is performed to form epitaxial layer on a substrate. A first supplier supplies source gases for the epitaxial layer into the process chamber. A second supplier supplies dopants into the process chamber. A detector detects a composition ratio of the epitaxial layer and a concentration of the dopants in the epitaxial layer during the epitaxial growth process. And a controller controls a mass flow of at least one of the source gases and a mass flow of the dopants in-line with the epitaxial growth process. Accordingly, the layer thickness of the epitaxial layer can be accurately controlled in real time in line with the epitaxial process.
Abstract:
A spatial image having 2D spatial information is obtained from a surface of a sample by an image creating method. The surface of the sample is milled to obtain an elemental image having material information from the milled surface. The spatial image and the elemental image are composed to form a 2D spatial/elemental image.
Abstract:
Spectral ellipsometry measurement systems are provided including a polarizer that rotates at a first angle and adjusts a polarizing direction of incident light of a measurement sample; a compensator that rotates at a second angle, different from the first angle, and adjusts a phase difference of the incident light; an analyzer that rotates at a third angle and adjusts a polarizing direction of light reflected on the measurement sample; a detector that detects a spectral image from the reflected light; a controller that controls one of the polarizer, the compensator, and the analyzer according to polarizer-compensator-analyzer (PCA) angle sets including the first to third angles; and a processor that receives, from the detector, a first spectral image corresponding to a first PCA angle set and a first wavelength and a second spectral image corresponding to a second PCA angle set and a second wavelength, different from the first wavelength, and generates a polarizer-compensator-analyzer rotating (PCAR) spectral matrix using the first and second spectral images.