Abstract:
An electronic device is provided. The electronic device includes a display, memory storing one or more computer programs, and one or more processors communicatively coupled to the display and the memory, wherein the one or more computer programs include computer-executable instructions that, when executed by the one or more processors, cause the electronic device to control the display to display a first screen in a first area of the display during a first state in which a second area among the first area and the second area of the display is not exposed to an outside of the electronic device, detect an event in a state in which the first screen is displayed in the first area, control, based on detection of the event, the display to display a first object corresponding to the event in a partial area of the first area, the first object being displayed in at least a part of the first screen, identify a first gesture input of a user in an area in which the first object is displayed, in a state in which an area ratio of a size of the first object to a size of the first area is equal to or greater than a designated ratio, and control, in response to the identification of the first gesture input, the electronic device to change a state of the display from the first state to a second state in which the first area and the second area of the display are exposed to the outside of the electronic device.
Abstract:
A method of designing a layout of an integrated circuit includes generating floorplan data by performing floorplan based on input data for the integrated circuit, searching for a path between a first point and a second point, which are specified, the searching based on the floorplan data, and positioning components of the layout based on a result of the searching. The searching for the path includes distinguishing based on the floorplan data a first region where routing is possible from a second region where the routing is not possible, receiving position data on the first point and the second point, and searching for a shortest path between the first point and the second point, on the first region.
Abstract:
A backlight unit for a three-dimensional (3D) image display includes a light guiding plate configured to guide light; a light source configured to emit the light to the light guiding plate; and a diffraction grating structure provided on a surface of the light guiding plate, the diffraction grating structure configured to diffract the light emitted from the surface of the light guiding plate, and including diffracting gratings having different heights.
Abstract:
A light-field display device includes a screen, a grating pixel array, and an image generator. The image generator outputs light including three-dimensional (3D) image information. The grating pixel array is configured to diffract the light including the 3D image information in multiple directions, thereby forming a 3D image. The image generator outputs the light having the 3D image information to the screen at a predetermined angle.
Abstract:
A double-sided glassless three-dimensional (3D) display apparatus including a backlight unit may include an light source unit configured to emit light to the front and the rear thereof by diffracting incident light, and first and second display devices configured to use the light emitted by the light source unit as light for a 3D image formation and to form the 3D image on both sides of the light source unit. The light source unit may include a light source portion configured to emit three lights that have three different respective wavelengths and a light guide panel configured to transmit the lights emitted by the light source portion to the first and second display devices.
Abstract:
A pattern structure includes a plurality of pattern structure units arranged on a same plane, where each of the plurality of pattern structure units includes a plurality of microstructures defined on a surface thereof and having a width of less than about 1 micrometer (μm); and a connection layer disposed between the plurality of pattern structure units and having a width of less than about 10 μm, where the connection layer connects the plurality of pattern structure units to each other.
Abstract:
A method for manufacturing a pattern structure includes preparing a wafer that has a plurality of fine patterns, generating a first trench by processing the wafer from a first surface to a first depth, and generating a second trench connected to the first trench by processing the wafer from a second surface which is opposite to the first surface to a second depth, thereby cutting the wafer.
Abstract:
A beam deflector includes a first wavelength selective polarizer configured to convert a polarization state of light in a first wavelength band into a first polarization state, a first liquid crystal deflector including liquid crystal molecules and an optical path change surface to deflect light incident from the first wavelength selective polarizer, and a controller configured to control the first liquid crystal deflector to adjust an angle of the first optical path change surface.
Abstract:
A method of manufacturing a pattern structure is provided. The method includes forming a fine pattern on a wafer, cutting the wafer by irradiating the wafer with a laser while changing a focal depth of the laser, thereby forming a unit pattern structure having a fine pattern, and bonding cutting surfaces of at least two unit pattern structures. The cutting of the wafer comprises moving a focal position of the laser in a horizontal direction and changing the focal depth of the laser, such that the unit pattern structure has a cutting surface profile in which a first surface of the unit pattern structure on which the fine pattern is formed protrudes, in a direction substantially parallel to the first surface, from a second surface of the unit pattern structure that is opposite to the first surface.
Abstract:
A three-dimensional (3D) image display apparatus includes a backlight unit configured to provide collimated white light, and a display panel configured to modulate the light provided from the backlight unit based on image information and to display the light in a plurality of viewing zones. The display panel includes a diffractive color filter in which a diffractive element for providing directivity is disposed on a color filter, thereby improving an optical efficiency in 3D image formation.