Abstract:
There are provided a fan-out sensor package and an optical fingerprint sensor module including the same. The fan-out sensor package includes: a connection member having a 5 through-hole; an image sensor disposed in the through-hole of the connection member and having an active surface having connection pads disposed thereon and an inactive surface opposing the active surface; an encapsulant encapsulating at least portions of the connection member, the image sensor, and 10 an optical lens; and a redistribution layer disposed on the connection member, the image sensor, and the optical lens. The connection member includes a wiring layer, and the redistribution layer electrically connects the wiring layer and the connection pads to each other.
Abstract:
A fan-out fingerprint sensor package includes a first connection member having a through-hole, a fingerprint sensor disposed in the through-hole, an encapsulant encapsulating at least portions of the first connection member and the fingerprint sensor, and a second connection member disposed on the first connection member and an active surface of the fingerprint sensor. The first connection member includes a distribution layer. The second connection member includes a first insulating layer disposed on the distribution layer and the active surface, a redistribution layer disposed on the first insulating layer, a first via connecting the redistribution layer to a connection pad of the fingerprint sensor, and a second via connecting the redistribution layer to the distribution layer. The first via passes through the first insulating layer and at least a portion of the encapsulant, and the second via passes through the first insulating layer.
Abstract:
Provided are a monitoring device and method. A monitoring device includes a laser processor configured to emit a processing laser beam to perform a melting annealing process on a wafer; a laser monitor configured to emit a monitoring laser beam onto the wafer while the laser processor performs the melting annealing process, the laser monitor configured to measure reflectivity of the wafer; and a data processor configured to process data on the reflectivity measured by the laser monitor, and monitor one or more characteristics of the wafer based on the data on the reflectivity.
Abstract:
Provided are a monitoring device and method. A monitoring device includes a laser processor configured to emit a processing laser beam to perform a melting annealing process on a wafer; a laser monitor configured to emit a monitoring laser beam onto the wafer while the laser processor performs the melting annealing process, the laser monitor configured to measure reflectivity of the wafer; and a data processor configured to process data on the reflectivity measured by the laser monitor, and monitor one or more characteristics of the wafer based on the data on the reflectivity.
Abstract:
According to an exemplary embodiment of the present disclosure, a method of generating a network-on-chip (NoC) in an electronic device includes clustering a plurality of cores based on total communication energy comprising first communication energy between a plurality of voltage-frequency-islands (VFIs) and second communication energy inside the plurality of VFIs.
Abstract:
According to an exemplary embodiment of the present disclosure, a method of generating a network-on-chip (NoC) in an electronic device includes clustering a plurality of cores based on total communication energy comprising first communication energy between a plurality of voltage-frequency-islands (VFIs) and second communication energy inside the plurality of VFIs.