Abstract:
An electronic device having an electrode made of metal that reacts easily with carbon is provided. In the electronic device, the electrode on which carbon nanotubes are deposited by a chemical vapor deposition method using a reactant gas containing carbon and oxygen, is made of a metal generating less reaction enthalpy when reacting with carbon than when reacting with oxygen. Since the electrode is made of a metal which reacts with carbon faster than oxygen, a carbonized metal layer is formed on the electrode, thereby preventing the electrode from being oxidized. Accordingly, the carbon nanotubes can be easily deposited on the electrode.
Abstract:
A method of forming a floating structure lifting up from a substrate and a method of manufacturing a field emission device (FED) employing the floating structure are provided. The method of forming a floating structure includes forming an expansion causer layer, which can generate a byproduct from the reacting with a predetermined reactant gas causing volume expansion, on the substrate; forming an object material layer for the floating structure on a resultant stack; forming a hole through which the reactant gas is supplied on a resultant stack; supplying the reactant gas through the hole so that the object material layer partially lifts up from the substrate due to the byproduct generated from the reaction of the expansion causer layer with the reactant gas; and removing the byproduct through the hole so that the portion of the object material layer lifting up from the substrate can be completely separated from the substrate to form the floating structure.
Abstract:
An electroluminescent device is provided. The device has a stacked structure in which an electric field enhancing layer is present between a dielectric layer, which contacts an inorganic light-emitting layer, and an electrode. In the device, electrons are additionally supplied by the electric field enhancing layer to increase electroluminescent efficiency, enabling the device to emit light having desired brightness, and lengthening the life span of the device.