摘要:
An electron collector structure and a lithium battery including the same are disclosed. The electron collector structure includes a conductive thin film; and a graphene layer that is coated on the surface of the conductive thin film and may improve the electrical conductivity of an electrode plate. As an electrode of the lithium battery includes the electron collector structure, the electrical conductivity of the electrode may be increased so that the energy consumption properties as well as the lifespan characteristics of the lithium battery may be also improved.
摘要:
A composite cathode active material represented by the formula (1−x)LiM1aM2bM3cO2−xLi2M4O3, wherein M1, M2, and M3 are each independently selected from the group of titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), aluminum (Al), magnesium (Mg), zirconium (Zr), and boron (B); M4 is selected from the group consisting of manganese (Mn), titanium (Ti0, and zirconium (Zr); M1, M2, and M3 are different from one another; and 0.5
摘要:
A positive active material for a rechargeable lithium battery includes a core including an overlithiated oxide represented by Chemical Formula 1, a first coating layer on the core and including a compound having a spinel structure, and a second coating layer on the first coating layer and including a compound represented by Chemical Formula 2. The compound having a spinel structure shows a peak between about 2.6 V and about 2.7 V in a graph of differential capacity dQ/dV vs. voltage, where the voltage is between about 4.7 V and about 2.5 V. xLi2MnO3.(1−x)LiNiaCobMncO2 Chemical Formula 1 LidTieO2 Chemical Formula 2 In the above Chemical Formulae 1 and 2, x, a, b, c, d and e are as defined in the specification.
摘要:
Provided are a composite precursor of a cathode active material, the composite precursor including a cobalt hydroxide and a cobalt oxyhydroxide, where an X-ray diffraction spectrum of the composite precursor has a first peak observed at a diffraction angle (2θ) of 19.5°±0.5° and a second peak observed at a diffraction angle (2θ) of 38.5°±0.5°; a cathode active material prepared from the composite precursor; a cathode and a lithium battery including the composite precursor; and a method of preparing the composite precursor.
摘要:
Provided are a composite precursor of a cathode active material, the composite precursor including a cobalt hydroxide and a cobalt oxyhydroxide, where an X-ray diffraction spectrum of the composite precursor has a first peak observed at a diffraction angle (2θ) of 19.5°±0.5° and a second peak observed at a diffraction angle (2θ) of 38.5°±0.5°; a cathode active material prepared from the composite precursor; a cathode and a lithium battery including the composite precursor; and a method of preparing the composite precursor.
摘要:
A rechargeable lithium battery with improved electro-conductivity and improved rate characteristics and capacity characteristics is disclosed. The battery includes a positive active material that includes an olivine-type composite oxide; and a metal or an alloy thereof adhered to a surface of the olivine-type composite oxide, wherein the metal or the alloy is selected from the group consisting of germanium (Ge), zinc (Zn), gallium (Ga), and a combination thereof.
摘要:
A positive active material, a positive electrode and a lithium battery containing the positive active material, and a method of manufacturing the positive active material are disclosed. The positive active material includes: a positive active material core particle for intercalating and deintercalating lithium ions; and a coating layer at least partially surrounding the positive active material core particle and including a ceramic composite represented by Formula 1. Li7+aLa3−bZr2−cMdO12+e Formula 1 In Formula 1, M comprises at least one selected from aluminum (Al), titanium (Ti), scandium (Sc), vanadium (V), yttrium (Y), niobium (Nb), hafnium (Hf), tantalum (Ta), silicon (Si), gallium (Ga), and germanium (Ge), and −1≦a≦1, 0≦b≦2, 0≦c≦2, 0≦d≦2, and 0≦e≦1.
摘要:
In an aspect, a positive active material for a rechargeable lithium battery that includes a lithium composite oxide including a Fe-containing compound phase and a Li-containing compound phase, a method of preparing the same, and a rechargeable lithium battery including the same are provided.
摘要:
A composite cathode active material, a cathode including the same, a lithium battery including the cathode, and preparation method thereof are disclosed. The composite cathode active material includes: a core capable of intercalating and deintercalating lithium; and a crystalline coating layer disposed on at least part of a surface of the core, wherein the coating layer include a metal oxide.
摘要:
Disclosed is a method of preparing a positive active material for a rechargeable lithium battery that includes mixing an iron source including a carbon source, a lithium source, and a phosphoric acid source to form a positive active material precursor for a rechargeable lithium battery, the positive active material precursor including a lithium iron phosphate precursor and a carbon precursor; pulverizing the positive active material precursor for a rechargeable lithium battery; and heat-treating the pulverized positive active material precursor for a rechargeable lithium battery.