摘要:
Disclosed are, inter alia, methods, apparatus, data structures, computer-readable media, and mechanisms for limiting unauthorized multicast sources. One or more access control lists are typically configured in a switching device to a state that denies forwarding of multicast packets with a particular host as its source. In response to a received multicast application admission-control message identifying the particular host, the one or more access control lists in the switching device are updated to allow multicast messages sent from the particular host to be forwarded. In one system, the received multicast application admission-control message is an Internet Group Management Protocol (IGMP) message. In response to the received multicast application admission-control message identifying the particular host, one system automatically adds one or more entries to the one or more access control lists to allow multicast traffic to be sent to and received from a next switching device leading to a corresponding multicast Rendezvous Point.
摘要:
Disclosed are, inter alia, methods, apparatus, data structures, computer-readable media, and mechanisms for limiting unauthorized multicast sources. One or more access control lists are typically configured in a switching device to a state that denies forwarding of multicast packets with a particular host as its source. In response to a received multicast application admission-control message identifying the particular host, the one or more access control lists in the switching device are updated to allow multicast messages sent from the particular host to be forwarded. In one system, the received multicast application admission-control message is an Internet Group Management Protocol (IGMP) message. In response to the received multicast application admission-control message identifying the particular host, one system automatically adds one or more entries to the one or more access control lists to allow multicast traffic to be sent to and received from a next switching device leading to a corresponding multicast Rendezvous Point.
摘要:
Methods and apparatus for contention-based access in a wireless communication system are disclosed. A base station may determine a contention-based resource allocation comprising a subset of available system resources. Information related to the contention-based resources may be sent to a user device. In addition, state information may be provided to the UE. The UE may generate and send a contention-based uplink transmission consistent with the allocated resources and state information.
摘要:
Methods and apparatus for communicating short messages from a first device, e.g., a femto cell device or peer to peer device, over communications resources which are being used by an OFDM macro network, e.g., cellular network, are described. The signal goes on top of, e.g., is transmitted on the same communications resource(s), on which a macro signal, e.g. a downlink signal from a cellular base station, is transmitted. Since the signals are transmitted on the same resources as the signals from the macro base station, they interfere with the macro signal. However, the signals transmitted by the femto cell devices and/or peer to peer devices are designed so that they cause little interference to the macro base station in terms of overall throughput and/or with the macro base station's ability to communicate control and/or pilot information.
摘要:
Providing for management of wireless communications in a heterogeneous wireless access point (AP) environment is described herein. By way of example, system data of an over-the-air message can be configured to include information identifying a distinct type of transmitting base station. In some aspects, the information can include an access type of the base station and/or a sector ID for distinguishing the base station among large numbers of other base stations. According to other aspects, the information can include wireless channel resources designated for a particular type of base station, or blanked by the transmitting base station, to facilitate interference reduction on such resources. By employing aspects of wireless communication management disclosed herein, efficient and reliable communication can be affected in large heterogeneous AP networks.
摘要:
Techniques for transmitting data with short-term interference mitigation in a wireless communication system are described. In one design, a serving base station may send a message to a terminal to trigger short-term interference mitigation. In response, the terminal may send a message to request at least one interfering base station to reduce interference on at least one resource. Each interfering base station may determine a transmit power level to be used for the at least one resource and may send a pilot at this transmit power level. The terminal may estimate the channel quality of the at least one resource based on at least one pilot received from the at least one interfering base station. The terminal may send information indicative of the estimated channel quality to the serving base station. The serving base station may send a data transmission on the at least one resource to the terminal.
摘要:
A method, a computer program product, and an apparatus are provided in which the apparatus (e.g., a femto cell) receives timing information from a second apparatus (e.g., a macro cell). The apparatus receives a signal from a third apparatus (e.g., a UE) based on the received timing information. The apparatus transmits a broadcast signal based on the received signal. A method, a computer program product, and an apparatus are provided in which the apparatus (e.g., a UE) receives timing information from a second apparatus (e.g., macro cell). The apparatus transmits a signal to a third apparatus (e.g., a femto cell) based on the received timing information. The apparatus receives a broadcast signal from the third apparatus in response to the signal.
摘要:
Techniques for bundling and ciphering data prior to transmission are described. In an exemplary design, a transmitting entity receives a plurality of service data units (SDUs) from an upper layer, assigns sequential sequence numbers to the SDUs, and bundles the SDUs into a single protocol data unit (PDU). In one design, the transmitting entity generates a single count value based on a sequence number of a designated SDU (e.g., the first SDU) in the PDU and ciphers all SDUs based on the single count value. In another design, the transmitting entity ciphers each segment of at least two SDUs in the PDU based on a count value for that segment. The transmitting entity generates a header with at least one sequence number and possibly length and/or other information for the SDUs. The transmitting entity forms the PDU with the header and the SDUs and passes the PDU to a lower layer.
摘要:
Aspects describe conveying unicast information and broadcast information in a resource set for a transmission request. The unicast information and broadcast information can be transmitted at substantially the same time. Power control can be applied separately to the unicast information and the broadcast information for reliable decoding. A null request can be indicated by “00” bits in a unicast portion and a zero power level in the broadcast portion.
摘要:
Various traffic management techniques may be employed in a multi-hop wireless communication system. For example, a decision to transmit data to another node may be based on whether that node is able to effectively transmit its data. A decision to transmit an interference management message may be based on the amount of data a parent node may transmit. A decision to transmit an interference management message may be based on how effectively data is being transmitted. A weight may be assigned for an interference management message based on a traffic scheduling policy.