摘要:
The present invention relates to technology which performs wireless communications of a vehicle by selectively operating a wireless communications module of a vehicle connected to an AP (Access Point) which collects vehicle information according to the state of the vehicle. The present invention includes a vehicle information storage unit that stores vehicle information collected from each electronic control unit of a vehicle; a wireless communications module that performs wireless communications with an AP (Access Point); and a wireless communications controller that controls a connection state of the AP with the wireless communications module by selectively operating the wireless communications module according to the state of the vehicle, and sends the vehicle information to the AP through the wireless communications module.
摘要:
The present invention relates to technology which performs wireless communications of a vehicle by selectively operating a wireless communications module of a vehicle connected to an AP (Access Point) which collects vehicle information according to the state of the vehicle. The present invention includes a vehicle information storage unit that stores vehicle information collected from each electronic control unit of a vehicle; a wireless communications module that performs wireless communications with an AP (Access Point); and a wireless communications controller that controls a connection state of the AP with the wireless communications module by selectively operating the wireless communications module according to the state of the vehicle, and sends the vehicle information to the AP through the wireless communications module.
摘要:
A semiconductor device is manufactured by, inter alia: forming second gate lines, arranged at wider intervals than each of first gate lines and first gate lines, over a semiconductor substrate; forming a multi-layered insulating layer over the entire surface of the semiconductor substrate including the first and the second gate lines; etching the multi-layered insulating layer so that a part of the multi-layered insulating layer remains between the first gate lines and the first and the second gate lines; forming mask patterns formed on the respective remaining multi-layered insulating layers and each formed to cover the multi-layered insulating layer between the second gate lines; and etching the multi-layered insulating layers remaining between the first gate lines and between the first and the second gate lines and not covered by the mask patterns so that the first and the second gate lines are exposed.
摘要:
A semiconductor memory device includes a semiconductor substrate defining active regions partitioned by an isolation region, conductive lines spaced apart from each other and crossing the active regions over the semiconductor substrate, a thin film pattern formed on a top portion of the conductive lines having opening portions exposing part of the conductive lines in a width wider than a width of the conductive lines, an insulating layer filling the opening portions and formed over the thin film pattern, and an air gap formed between the conductive lines below the insulating layer and the thin film pattern.
摘要:
The present invention relates to a method of manufacturing a semiconductor device, which is capable of effectively removing a WO.sub.3 film generated on a tungsten silicide during contact hole etch that opens a gate electrode including the tungsten silicide as its top film by selectively etching a interlayer insulating film. The WO.sub.3 film is removed by a washing process using an alkaline solution such as TMAH(tetra-methyl-ammonium-hydroxide) or NH.sub.4 OH solution. The effective removal of the WO.sub.3 film reduces the contact resistance between a conductive material layer to be formed in he contact hole by a later process and the gate electrode, thereby improving the operative characteristics of the semiconductor device. TMAH solution used in the washing process has a high selectivity of WO.sub.3 film relative to a thermal oxide film or a BPSG film that is generally used as the interlayer insulating film. Thus, the present invention is capable of minimizing the damage of the side parts of the interlayer insulating film during the washing process after contact etching.
摘要:
A semiconductor memory device includes a semiconductor substrate defining active regions partitioned by an isolation region, conductive lines spaced apart from each other and crossing the active regions over the semiconductor substrate, a thin film pattern formed on a top portion of the conductive lines having opening portions exposing part of the conductive lines in a width wider than a width of the conductive lines, an insulating layer filling the opening portions and formed over the thin film pattern, and an air gap formed between the conductive lines below the insulating layer and the thin film pattern.
摘要:
A method of manufacturing a nonvolatile memory device includes forming a tunnel insulating layer over a semiconductor substrate, forming tunnel insulating patterns to expose portions of the semiconductor substrate by removing portions of the tunnel insulating layer formed over isolation regions of the semiconductor substrate, forming a first conductive layer of single crystalline material over the tunnel insulating patterns and exposed portions of the semiconductor substrate, and forming a second conductive layer over the first conductive layer.
摘要:
The present invention relates to a semiconductor technology and more specifically to a method of fabricating a gate electrode of a semiconductor device, where a re-oxidation process that may cause an abnormal oxidation can be eliminated. In a polysilicon/silicide structure or polysilicon/metal structure of gate electrode, a step of etching side parts of gate electrode is performed without any etch mask after gate patterning. Here, the etch can be made by wet or dry etch using an etchant having high selectivity of polysilicon film to a gate oxide film, so that the damaged gate oxide part during the gate patterning is allowed not to make a role of the gate insulating film itself, thereby eliminating the re-oxidation process.
摘要:
Disclosed is a method for forming a gate electrode of a semiconductor device, the method comprises the steps of: stacking a gate oxide film, a doped first silicon film, a diffusion preventing film, a metal film having a high melting point and a mask insulating film on a semiconductor substrate; forming a gate electrode by patterning a resultant stack structure; forming a second silicon film on an entire surface of a resultant structure; forming an oxidation preventing film on an entire surface of a resultant structure; forming a spacer on a side wall of the gate electrode by anisotrophically etching the oxidation preventing film and the second silicon film; and forming a gate reoxide film on the semiconductor substrate by oxidizing the semiconductor substrate.
摘要:
A method of forming a gate electrode in a semiconductor device which can easily perform etching process for forming the gate electrode and reduce the resistivity of a gate electrode, is disclosed. In the present invention, a gate oxide layer, an amorphous silicon layer and a tungsten silicide layer are sequentially formed on a semiconductor substrate. A mask oxide pattern is then formed on the tungsten silicide layer in the shape of a gate electrode. Next, the tungsten silicide layer and the amorphous silicon layer are etched using the mask oxide pattern as an etch mask, to form a gate electrode. Thereafter, the amorphous silicon layer and the tungsten silicide layer of the gate electrode are thermal-treated by RTP spike annealing and an oxide layer is then formed on the side wall of the gate electrode. According to the present invention, by reducing resistivity of a tungsten silicide layer, it is possible to apply a conventional gate electrode material to high integration device over 1GDRAM, thereby lowering cost to develop a new gate electrode material. Furthermore, etching process for forming a gate electrode is easily performed when using the tungsten silicide layer as the gate electrode material, thereby obtaining uniform gate electrode. As a result, the reliability of a device is improved.