摘要:
A fuel cell system having improved driving performance is disclosed. The fuel cell system includes a stack, which may include a membrane electrode assembly, a separator and end plates provided on the both sides of the stacked membrane electrode assembly and the separator. The membrane electrode assembly may include an anode electrode, a cathode electrode, and an electrolyte membrane. The separator may be positioned with respect to the anode electrode and the cathode electrode, respectively. The end plate may include an oxidant inlet configured to supply oxidant to the cathode electrode, an unreacted oxidant outlet configured to output the unreacted oxidant from the cathode electrode, and a absorption member in fluid communication between the oxidant inlet and the unreacted oxidant outlet.
摘要:
A fuel cell stack includes membrane-electrode assemblies and separators that are closely disposed to both sides of the membrane-electrode assembly. Each membrane-electrode assembly includes an electrolyte membrane, an anode electrode that is formed on one surface of the electrolyte membrane, a cathode electrode that is formed on the other surface of the electrolyte membrane, and a protective layer formed at an oxidant inlet region where oxidant is first injected into the respective cathode electrode.
摘要:
A membrane-electrode assembly (MEA) for a fuel cell includes a fuel cell electrolyte membrane, an anode disposed at a first side of the electrolyte membrane, and a cathode disposed at a second side of the electrolyte membrane, wherein the cathode has a thickness and an area, the cathode area extending in a plane substantially parallel to a major surface of the electrolyte membrane, the cathode area includes a central area and a peripheral area, the peripheral area extending to lateral edges of the cathode, the central area includes hydrophilic portions and hydrophobic portions, the peripheral area includes hydrophilic portions and hydrophobic portions, and the central area is more hydrophobic than the peripheral area.
摘要:
An electrode catalyst for a fuel cell including a carbon-based carrier and an active metal supported in the carrier, for example, an electrode catalyst for a fuel cell includes a carrier and an active metal supported in the carrier, wherein the electrode catalyst has an X value of 95 to 100% in Equation 1. X(%)=(XPS measurement value)/(TGA measurement value)×100 [Equation 1] wherein, the XPS measurement value represents a quantitative amount of the active metal present on a surface of the electrode catalyst, the TGA measurement value represents the XPS measurement value using a monochromated Al Kα-ray, which is the quantitative amount of total active metal supported in the catalyst.
摘要:
A catalyst for a fuel cell including a carrier and an active metal dispersion that is supported in the carrier is disclosed. The catalyst may have a dispersity (Dp) represented by General Formula 1 and that ranges from between about 0.01 to about 1.0. Dispersity(Dp)={X−X10/(X1−B)}*(B/X)2 [General Formula 1] In the General Formula 1, X, X10, X1, and B are defined the same as described in the specification. A membrane-electrode assembly, and a fuel cell system having the catalyst are also disclosed.
摘要:
Disclosed are an electrode for a fuel cell, a method of preparing the fuel cell electrode, a membrane-electrode assembly including the fuel cell electrode, and a fuel cell system including the fuel cell electrode. The electrode includes an electrode substrate having a conductive substrate and a layer-by-layer assembled multi-layer disposed on a side of the conductive substrate and a bilayer including a polymer electrolyte or a conductive nanoparticle, and a catalyst layer disposed on the electrode substrate.
摘要:
An electrode for a fuel cell is disclosed. The electrode may include an electrode substrate with a conductive substrate, carbon particles, and a catalyst layer disposed on the electrode substrate. The electrode substrate may include a pore having an average diameter of about 20 μm to about 40 μm and porosity of about 30 volume % to about 80 volume % based on the total volume of the electrode substrate. A membrane-electrode assembly including the electrode and a fuel cell system including the membrane electrode assembly are also disclosed.