摘要:
Disclosed is a semiconductor device having an align key and a method of fabricating the same. The semiconductor device includes a semiconductor substrate having a cell area and an align key area. An isolation layer that defines a cell active area is disposed in the cell area of the semiconductor substrate. A cell charge storage layer pattern is disposed across the cell active area. An align charge storage layer pattern is disposed in the align key area of the semiconductor substrate. An align trench self-aligned with the align charge storage layer pattern is formed in the align key area of the semiconductor substrate.
摘要:
Disclosed is a semiconductor device having an align key and a method of fabricating the same. The semiconductor device includes a semiconductor substrate having a cell area and an align key area. An isolation layer that defines a cell active area is disposed in the cell area of the semiconductor substrate. A cell charge storage layer pattern is disposed across the cell active area. An align charge storage layer pattern is disposed in the align key area of the semiconductor substrate. An align trench self-aligned with the align charge storage layer pattern is formed in the align key area of the semiconductor substrate.
摘要:
Disclosed is a semiconductor device having an align key and a method of fabricating the same. The semiconductor device includes a semiconductor substrate having a cell area and an align key area. An isolation layer that defines a cell active area is disposed in the cell area of the semiconductor substrate. A cell charge storage layer pattern is disposed across the cell active area. An align charge storage layer pattern is disposed in the align key area of the semiconductor substrate. An align trench self-aligned with the align charge storage layer pattern is formed in the align key area of the semiconductor substrate.
摘要:
Disclosed is a semiconductor device having an align key and a method of fabricating the same. The semiconductor device includes a semiconductor substrate having a cell area and an align key area. An isolation layer that defines a cell active area is disposed in the cell area of the semiconductor substrate. A cell charge storage layer pattern is disposed across the cell active area. An align charge storage layer pattern is disposed in the align key area of the semiconductor substrate. An align trench self-aligned with the align charge storage layer pattern is formed in the align key area of the semiconductor substrate.
摘要:
The present invention discloses a semiconductor device having a floating trap type nonvolatile memory cell and a method for manufacturing the same. The method includes providing a semiconductor substrate having a nonvolatile memory region, a first region, and a second region. A triple layer composed of a tunnel oxide layer, a charge storing layer and a first deposited oxide layer on the semiconductor substrate is formed sequentially The triple layer on the semiconductor substrate except the nonvolatile memory region is then removed. A second deposited oxide layer is formed on an entire surface of the semiconductor substrate including the first and second regions from which the triple layer is removed. The second deposited oxide layer on the second region is removed, and a first thermal oxide layer is formed on the entire surface of the semiconductor substrate including the second region from which the second deposited oxide layer is removed. The semiconductor device can be manufactured according to the present invention to have a reduced processing time and a reduced change of impurity doping profile. The thickness of a blocking oxide layer and a high voltage gate oxide layer can be controlled.
摘要:
A method of manufacturing a non-volatile semiconductor memory device begins by forming a dielectric layer pattern having an ONO composition on a substrate. A polysilicon layer is formed on the substrate including over the dielectric layer pattern. The polysilicon layer is patterned to form a split polysilicon layer pattern that exposes part of the dielectric layer pattern. The exposed dielectric layer is etched, and then impurities are implanted into portions of the substrate using the split polysilicon layer pattern as a mask to thereby form a source region having a vertical profile in the substrate.
摘要:
The present invention discloses a semiconductor device having a floating trap type nonvolatile memory cell and a method for manufacturing the same. The method includes providing a semiconductor substrate having a nonvolatile memory region, a first region, and a second region. A triple layer composed of a tunnel oxide layer, a charge storing layer and a first deposited oxide layer on the semiconductor substrate is formed sequentially. The triple layer on the semiconductor substrate except the nonvolatile memory region is then removed. A second deposited oxide layer is formed on an entire surface of the semiconductor substrate including the first and second regions from which the triple layer is removed. The second deposited oxide layer on the second region is removed, and a first thermal oxide layer is formed on the entire surface of the semiconductor substrate including the second region from which the second deposited oxide layer is removed. The semiconductor device can be manufactured according to the present invention to have a reduced processing time and a reduced change of impurity doping profile. The thickness of a blocking oxide layer and a high voltage gate oxide layer can be controlled.
摘要:
A local SONOS structure having a two-piece gate and a self-aligned ONO structure includes: a substrate; an ONO structure on the substrate; a first gate layer on and aligned with the ONO structure; a gate insulator on the substrate aside the ONO structure; and a second gate layer on the first gate layer and on the gate insulator. The first and second gate layers are electrically connected together. Together, the ONO structure and first and second gate layers define at least a 1-bit local SONOS structure. A corresponding method of manufacture includes: providing a substrate; forming an ONO structure on the substrate; forming a first gate layer on and aligned with the ONO structure; forming a gate insulator on the substrate aside the ONO structure; forming a second gate layer on the first gate layer and on the gate insulator; and electrically connecting the first and second gate layers.
摘要:
The present invention discloses a semiconductor device having a floating trap type nonvolatile memory cell and a method for manufacturing the same. The method includes providing a semiconductor substrate having a nonvolatile memory region, a first region, and a second region. A triple layer composed of a tunnel oxide layer, a charge storing layer and a first deposited oxide layer on the semiconductor substrate is formed sequentially. The triple layer on the semiconductor substrate except the nonvolatile memory region is then removed. A second deposited oxide layer is formed on an entire surface of the semiconductor substrate including the first and second regions from which the triple layer is removed. The second deposited oxide layer on the second region is removed, and a first thermal oxide layer is formed on the entire surface of the semiconductor substrate including the second region from which the second deposited oxide layer is removed. The semiconductor device can be manufactured according to the present invention to have a reduced processing time and a reduced change of impurity doping profile. The thickness of a blocking oxide layer and a high voltage gate oxide layer can be controlled.
摘要:
A local SONOS structure having a two-piece gate and a self-aligned ONO structure includes: a substrate; an ONO structure on the substrate; a first gate layer on and aligned with the ONO structure; a gate insulator on the substrate aside the ONO structure; and a second gate layer on the first gate layer and on the gate insulator. The first and second gate layers are electrically connected together. Together, the ONO structure and first and second gate layers define at least a 1-bit local SONOS structure. A corresponding method of manufacture includes: providing a substrate; forming an ONO structure on the substrate; forming a first gate layer on and aligned with the ONO structure; forming a gate insulator on the substrate aside the ONO structure; forming a second gate layer on the first gate layer and on the gate insulator; and electrically connecting the first and second gate layers.