SINGLE-WALLED METAL OXIDE NANOTUBES
    2.
    发明申请
    SINGLE-WALLED METAL OXIDE NANOTUBES 有权
    单壁金属氧化物纳米管

    公开(公告)号:US20110230672A1

    公开(公告)日:2011-09-22

    申请号:US13049375

    申请日:2011-03-16

    IPC分类号: C07F7/02 B82Y40/00 B82Y30/00

    摘要: Provided herein are methods for dehydrating single-walled metal oxide nanotubes by heating the SWNT under vacuum at 250-300° C.; methods of dehydroxylating SWNT, comprising heating the SWNT under vacuum at 300-340° C., and methods for maximizing the pore volume of a SWNT, comprising heating the SWNT at 300° C. under vacuum to partially dehydroxylate and dehydrate the SWNT; methods of modifying the inner surface of a single walled aluminosilicate nanotube (SWNT), comprising dehydration or dehydration and dehydroxylation, followed by reacting the SWNT with a derivative under anhydrous conditions to produce a SWNT that is derivatized on its inner surface. The invention also includes single-walled nanotubes produced by the methods of the invention.

    摘要翻译: 本文提供了通过在250-300℃真空下加热SWNT来使单壁金属氧化物纳米管脱水的方法。 脱水氧化SWNT的方法,包括在300-340℃下真空加热SWNT,以及使SWNT的孔体积最大化的方法,包括在真空下在300℃下加热SWNT以使SWNT部分脱羟基化和脱水; 改变单壁铝硅酸盐纳米管(SWNT)的内表面的方法,包括脱水或脱水和脱羟基化,然后在无水条件下使SWNT与衍生物反应以产生在其内表面衍生的SWNT。 本发明还包括通过本发明的方法制备的单壁纳米管。

    Single walled metal oxide nanotubes
    4.
    发明授权
    Single walled metal oxide nanotubes 有权
    单壁金属氧化物纳米管

    公开(公告)号:US08637693B2

    公开(公告)日:2014-01-28

    申请号:US13049375

    申请日:2011-03-16

    IPC分类号: C07F19/00 C07F7/02 C07F5/06

    摘要: Provided herein are methods for dehydrating single-walled metal oxide nanotubes by heating the SWNT under vacuum at 250-300° C.; methods of dehydroxylating SWNT, comprising heating the SWNT under vacuum at 300-340° C., and methods for maximizing the pore volume of a SWNT, comprising heating the SWNT at 300° C. under vacuum to partially dehydroxylate and dehydrate the SWNT; methods of modifying the inner surface of a single walled aluminosilicate nanotube (SWNT), comprising dehydration or dehydration and dehydroxylation, followed by reacting the SWNT with a derivative under anhydrous conditions to produce a SWNT that is derivatized on its inner surface. The invention also includes single-walled nanotubes produced by the methods of the invention.

    摘要翻译: 本文提供了通过在250-300℃真空下加热SWNT来使单壁金属氧化物纳米管脱水的方法。 脱水氧化SWNT的方法,包括在300-340℃下真空加热SWNT,以及使SWNT的孔体积最大化的方法,包括在真空下在300℃下加热SWNT以使SWNT部分脱羟基化和脱水; 改变单壁铝硅酸盐纳米管(SWNT)的内表面的方法,包括脱水或脱水和脱羟基化,然后在无水条件下使SWNT与衍生物反应以产生在其内表面衍生的SWNT。 本发明还包括通过本发明的方法制备的单壁纳米管。

    System and Method for Tracking Application Data

    公开(公告)号:US20200264859A1

    公开(公告)日:2020-08-20

    申请号:US15709416

    申请日:2017-09-19

    申请人: Christopher Jones

    摘要: The present disclosure is directed to systems and methods for tracking application data, the method comprising: having a publisher integrate organic install tracking (OIT) code into its website; enabling a visitor to view or click on a link published on the publisher's website or application that links to an application on an application store or on an application download website; passing, via the OIT code, visitor information to an OIT server, the visitor information including impression information, application detail information, visitor click information and visitor device information; determining, with the OIT server, which portions of the visitor information are to be passed to at least one attribution analytics provider (AAP) as attribution data; passing the attribution data to the application's AAP; allowing a user to visit the application store or application download website to download the application, open the application installer and install the application; matching, with the application's AAP, the user with the visitor click information of the visitor information to record the user as a valid install; and posting the valid install as an install confirmation in the OIT server.

    Injection device
    10.
    发明授权

    公开(公告)号:US10265478B2

    公开(公告)日:2019-04-23

    申请号:US13497773

    申请日:2010-09-29

    IPC分类号: A61M5/315 A61M5/24 A61M5/31

    摘要: An injection device (1) for administering a fixed dose of a medication is provided. The injection device (1) comprises a housing (2) wherein a drive mechanism comprising a drive member (3) is at least partially enclosed and a dosing element (34) which is fixed relative to the drive member (3). Here, a dose can be set by rotating the dosing element (34) relative to the housing (2) in a dose set direction (105) and the dose can be dispensed by pushing the dosing element (34) towards the housing (2). Moreover, a method is provided for operating an injection device (1) for the administration of a fixed dose of a medication: A dose can be set by rotating a dosing element (34), a dose can be dispensed by pushing the dosing element (34) towards the housing (2) and a dose can be cancelled by rotating the dosing element (34) in a direction (106) opposite to the dose set direction (105).