Abstract:
A method and an exhaust treatment system are provided for treatment of an exhaust stream comprising nitrogen oxides. The method comprises a first oxidation of compounds comprising one or more of nitrogen, carbon and hydrogen in the exhaust stream; a determination of a value for a ratio between a first amount of nitrogen dioxide and a first amount of nitrogen oxides after the first oxidation; and a first supply of a first additive into the exhaust stream, which is actively controlled based on the determined value for the ratio. Subsequently, a first reduction of at least the first amount of nitrogen oxides is carried out through a catalytic reaction in a catalytic filter, which consists of a particulate filter with an at least partly catalytic coating with reduction characteristics, and is arranged to catch and oxidize soot particles, and to carry out the first reduction of the first amount of nitrogen oxides.
Abstract:
An exhaust treatment system and method for the treatment of an exhaust stream from a combustion engine are provided. A first oxidation of compounds comprising one or more of nitrogen, carbon and hydrogen in the exhaust stream is carried out by a first oxidation catalyst. Further, a value (NO2_1/NOx_1)det for a ratio between a first amount of nitrogen dioxide and a first amount of nitrogen oxides leaving said first oxidation catalyst is determined. Active control of at least one parameter related to the combustion engine is carried out, based on the determined value, so that the ratio is impacted. A first additive is supplied into the exhaust stream, following which a first reduction of the first amount of nitrogen oxides is carried out through a catalytic reaction in a catalytic filter, which consists of a particulate filter with an at least partly catalytic coating with reduction characteristics. The catalytic filter is arranged for catching and oxidizing of soot particles, and to carry out the first reduction of the first amount of nitrogen oxides using the first additive.
Abstract:
An exhaust treatment system arranged for treatment of an exhaust stream is presented. The exhaust treatment system comprises a first reduction catalyst device arranged for reduction of nitrogen oxides in said exhaust stream through the use of compounds comprising one or several of carbon monoxide and hydrocarbons, which are comprised in said exhaust stream when said exhaust stream reaches said first reduction catalyst device; a particulate filter which is arranged downstream of said first reduction catalyst device to catch and oxidize soot particles in said exhaust stream; a second dosage device arranged downstream of said particulate filter and arranged to supply an additive comprising ammonia or a substance from which ammonia may be extracted and/or released into said exhaust stream; and a second reduction catalyst device, arranged downstream of said second dosage device and arranged for reduction of nitrogen oxides in said exhaust stream through the use of said additive.
Abstract:
An exhaust treatment system comprising: a first oxidation catalyst, to oxidize compounds comprising one or more of nitrogen, carbon, and hydrogen in the exhaust stream; a first dosage device o supply a first additive into an exhaust stream; a catalytic filter, consisting of a particulate filter with an at least partly catalytic coating with reduction characteristics, which is for catching and oxidizing soot particles and for a first reduction of an amount of nitrogen oxides NOx in the exhaust stream with the use of the first additive; a second oxidation catalyst, to oxidize one or more of nitrogen oxide NO and incompletely oxidized carbon compounds in the exhaust stream; a second dosage device to supply a second additive into the exhaust stream; and a reduction catalyst device, arranged for a second reduction of nitrogen oxides NOx in the exhaust stream, with the use of at least one of the first and second additives.
Abstract:
A method at an exhaust gas cleaning system for an engine (235) in which a reducing agent is added to a passage (290) for exhaust gases from the engine (235) for cleaning the exhaust gases. The exhaust gas cleaning system includes arrangements (270) that require a certain temperature level (Tmax) in order to achieve catalytic exhaust gas cleaning. The method is to distribute and store (s430) a limited amount of reducing agent at temperature level (Tmax); and to use (s440) during a cold start of the exhaust gas cleaning system, the distributed and stored reducing agent to achieve the catalytic exhaust gas cleaning. Also a computer program product (200; 210) to implement the method. Also an arrangement for an exhaust gas cleaning system for an engine (235), and a motor vehicle (100) equipped with the arrangement.
Abstract:
A method at an exhaust gas cleaning system for an engine (235) in which a reducing agent is added to a passage (290) for exhaust gases from the engine (235) for cleaning the exhaust gases. The exhaust gas cleaning system includes arrangements (270) that require a certain temperature level (Tmax) in order to achieve catalytic exhaust gas cleaning. The method is to distribute and store (s430) a limited amount of reducing agent at temperature level (Tmax); and to use (s440) during a cold start of the exhaust gas cleaning system, the distributed and stored reducing agent to achieve the catalytic exhaust gas cleaning. Also a computer program product (200; 210) to implement the method. Also an arrangement for an exhaust gas cleaning system for an engine (235), and a motor vehicle (100) equipped with the arrangement.
Abstract:
A method and a system for control of a dosage device and/or an engine that produces an exhaust stream (203) treated by an exhaust treatment system (250) that injects at least one additive into the exhaust stream (203) with a dosage device (271) to evaporate in an evaporation chamber (280). The method includes determining a time dependent condition of a position at an internal wall (281) of the evaporation chamber (280), the condition being determined based on the internal temperature related to the position, the internal temperature being determined based on a temperature model for the evaporation chamber (280) and an exhaust temperature for the exhaust stream (203) upstream of the evaporation chamber (208); determining a risk for at least one spatially resolved critical condition related to the position based on the time dependent condition, and controlling the dosage device (271) and/or the engine based on the determined risk.
Abstract:
An exhaust treatment system comprising: a first dosage device, arranged to supply a first additive into said exhaust stream; a first reduction catalyst device, downstream of said first dosage device arranged for reduction of nitrogen oxides in said exhaust stream through the use of said first additive; a particulate filter, at least partly comprising a catalytically oxidizing coating, which is downstream of said first reduction catalyst device to catch soot particles, and to oxidize one or several of nitrogen oxide and incompletely oxidized carbon compounds in said exhaust stream; a second dosage device, downstream of said particulate filter to supply a second additive into said exhaust stream; and a second reduction catalyst device, downstream of said second dosage device for a reduction of nitrogen oxides in said exhaust stream, with the use of at least one of said first and said second additive.
Abstract:
An exhaust treatment system comprising a first oxidation catalyst to oxidise nitrogen and/or carbon compounds in an exhaust stream and a first dosage device downstream of said first oxidation catalyst to supply a first additive. A first reduction catalyst device is arranged downstream of said first dosage device for reduction of nitrogen oxides using said first additive, and for the generation of heat, through at least one exothermal reaction with said exhaust stream. A particulate filter arranged downstream of said first reduction catalyst device to catch soot particles and a second dosage device, arranged downstream of said particulate filter to supply a second additive. A second reduction catalyst device is arranged downstream of said second dosage device for reduction of nitrogen oxides in said exhaust stream, through the use of at least one of said first and said second additive.
Abstract:
An exhaust treatment system comprising: a first dosage device, arranged to supply a first additive into said exhaust stream; a first reduction catalyst device, downstream of said first dosage device arranged for reduction of nitrogen oxides in said exhaust stream through the use of said first additive; a particulate filter, at least partly comprising a catalytically oxidizing coating, which is downstream of said first reduction catalyst device to catch soot particles, and to oxidize one or several of nitrogen oxide and incompletely oxidized carbon compounds in said exhaust stream; a second dosage device, downstream of said particulate filter to supply a second additive into said exhaust stream; and a second reduction catalyst device, downstream of said second dosage device for a reduction of nitrogen oxides in said exhaust stream, with the use of at least one of said first and said second additive.