摘要:
In a GaN-based light-emitting diode structure, a transparent conductive oxide layer is formed as a window layer on a GaN contact layer having a surface textured layer, and the textured layer acts as an ohmic contact layer with the transparent conductive oxide layer. Therefore, it is possible to reduce effectively the contact resistance and the working voltage, while the optical guiding effect is interrupted by the textured layer, to obtain thereby an enhancement of light extraction efficiency and thus an increase in the external quantum yield.
摘要:
A light-emitting gallium nitride-based III-V group compound semiconductor device with high light extraction efficiency that features on a substrate with concave and /or convex surface, a texturing surface layer, and a transparent conductive window layer. Therefore, the operating voltage is decreased and the efficiency of light extracting is improved.
摘要:
A light-emitting gallium nitride-based III-V group compound semiconductor device with high light extraction efficiency that features on a substrate with concave and/or convex surface, a texturing surface layer, and a transparent conductive window layer. Therefore, the operating voltage is decreased and the efficiency of light extracting is improved.
摘要:
A light-emitting gallium nitride-based III-V group compound semiconductor device with high light extraction efficiency that features on a substrate with concave and/or convex surface, a texturing surface layer, and a transparent conductive window layer. Therefore, the operating voltage is decreased and the efficiency of light extracting is improved.
摘要:
A manufacturing method and a thus produced light-emitting structure for a white colored light-emitting device (LED) and the LED itself are disclosed. The white colored LED includes a resonant cavity structure, producing and mixing lights which may mix into a white colored light in the resonant cavity structure, so that the white colored LED may be more accurately controlled in its generated white colored light, which efficiently reduces deficiency, generates natural white colored light and aids in luminous efficiency promotion. In addition to the resonant cavity structure, the light-emitting structure also includes a contact layer, an n-type metal electrode and a p-type metal electrode.
摘要:
A manufacturing method and a thus produced light-emitting structure for a white colored light-emitting device (LED) and the LED itself are disclosed. The white colored LED includes a resonant cavity structure, producing and mixing lights which may mix into a white colored light in the resonant cavity structure, so that the white colored LED may be more accurately controlled in its generated white colored light, which efficiently reduces deficiency, generates natural white colored light and aids in luminous efficiency promotion. In addition to the resonant cavity structure, the light-emitting structure also includes a contact layer, an n-type metal electrode and a p-type metal electrode.
摘要:
A method for manufacturing a light-emitting structure of a light-emitting device (LED) is disclosed. The white colored LED includes a resonant cavity structure, producing and mixing lights which may mix into a white colored light in the resonant cavity structure, so that the white colored LED may be more accurately controlled in its generated white colored light, which efficiently reduces deficiency, generates natural white colored light and aids in luminous efficiency promotion. In addition to the resonant cavity structure, the light-emitting structure also includes a contact layer, an n-type metal electrode, and a p-type metal electrode.
摘要:
Disclosed are a GaN based compound semiconductor light emitting diode (LED) and a manufacturing method therefor. In the LED, a combination of a light extraction layer and an adaptive layer is formed over a multi-layer epitaxial structure,wherein the light extraction layer is a light transmissible impurity doped metal oxide and the adaptive layer is a Ni/Au layer used to enhance ohmic contact between the light extraction layer and the multi-layer epitaxial structure.