Abstract:
An aqueous acid composition that may be used, for example, in a matrix acidizing treatment can include an acid, a polymeric acid corrosion inhibitor, and an acid corrosion inhibitor intensifier. The acid corrosion inhibitor can include iodide ions and metal ions, with the metal ions being one or more of copper, silver, bismuth, or antimony. The molar ratio of metal ions to iodide ions can be 1:X, where X is greater than or equal to 2. The polymer of the polymeric acid corrosion inhibitor can have a molecular weight less than 100,000 g/mol.
Abstract:
A method for measuring average thickness of a metal or alloy coating on a metal or alloy substrate using an X-ray fluorescence (XRF) spectrometer is used when the coating has an uneven surface at different distances from a measurement window of the XRF spectrometer. The method includes measuring elemental composition of the coating or substrate using the XRF spectrometer and obtaining the average thickness of the coating using a calibration relationship between coating thickness and elemental composition of the coating or substrate. The metal or alloy coating may be a metal or alloy coating of a plurality of outer armor wires wrapped around a cable. The method may be used to analyze coating thickness changes over time or along the length of the cable, or to analyze a corrosive environment in order to choose optimal material for a metal or alloy coating.
Abstract:
Improved emulsifier for synthetic-based mud, process for preparation, and drilling method. The emulsifier has the formula (II) wherein each R1 is a C4 to C30 alkyl; R2, R3, R5, and R6 are each independently selected from H, C1 to C4 alkyl, C1 to C4 alkoxyalkyl, and C1 to C4 hydroxyalkyl; n and m are independently integers from 1 to 10; and y is an integer from 1 to 5. It is prepared by reacting a polyalkyleneamine with a monocarboxylic acid to form a first reaction product, reacting the first reaction product with a dicarboxylic acid to form a second reaction product, and heat treating the second reaction product to form an isomer. The drilling fluid contains the emulsifier, an oleaginous phase, and a non-oleaginous phase, and during use is circulated in a wellbore.
Abstract:
A method is provided for characterizing fluid flow in a pipe where the fluid includes a drag reducing polymer of a particular type and particular concentration. A computational model is configured to model flow of a fluid in a pipe. The computational model utilizes an empirical parameter for a drag reducing polymer of the particular type and the particular concentration. The computational model can be used to derive information that characterizes the flow of the fluid in the pipe. The empirical parameter for the particular type and the particular concentration of the drag reducing polymer can be identified by solving another computational model that is configured to model turbulent Couette flow in a Couette device for a fluid that includes a drag reducing polymer of the particular type and the particular concentration. The empirical data needed for identification of the empirical parameter are obtained from Couette device experiments.
Abstract:
An aqueous acid composition that may be used, for example, in a matrix acidizing treatment can include an acid, a polymeric acid corrosion inhibitor, and an acid corrosion inhibitor intensifier. The acid corrosion inhibitor can include iodide ions and metal ions, with the metal ions being one or more of copper, silver, bismuth, or antimony. The molar ratio of metal ions to iodide ions can be 1:X, where X is greater than or equal to 2. The polymer of the polymeric acid corrosion inhibitor can have a molecular weight less than 100,000 g/mol.
Abstract:
Drilling fluid compositions include an emulsifier having a generic structure A, structure B, or a combination thereof. Structure A includes an amide (e.g., amic acid group) and structure B includes a cyclic imide. The emulsifier of the emulsifier system is formed by reacting a fatty oil amine (e.g., oleyl amine), with a cyclic anhydride (e.g., succinic anhydride) in the absence of diluent or in a diluent that does not react with the starting materials. The reaction takes place via application of a stepwise increase in temperature. An emulsifier based on structure A is formed when the reaction temperature is maintained at 50 to 100° C. for 1 to 3 hours. A further increase in reaction temperature (e.g., up to 200° C.) can include water elimination which results predominately in the formation of a molecule represented by structure B.
Abstract:
A method of inhibiting corrosion of metal which will be in contact with aqueous, and possibly acidic, solution comprises contacting the metal with a corrosion inhibiting composition containing more than 30% by weight of one or more organic corrosion inhibiting constituents which are water-insoluble hydrophobic material, and a corrosion inhibitor which contains one or more polymerisable groups containing double or triple bonded carbon, before contacting the metal with the aqueous solution. The method may be used to protect coiled tubing used for matrix acidizing of an oil well by propelling a slug of the corrosion inhibiting composition along the coiled tubing before pumping acid through the tubing.
Abstract:
A corrosion inhibiting compound with a general structure A-B or A-X-B for inhibition of corrosion of steel in acidic solution. A comprises a heterocyclic ring system having a plurality of cyclic Carbon atoms and at least one cyclic Nitrogen atom, wherein the at least one cyclic Nitrogen atom is neutral under neutral conditions and protonatable under acidic conditions. B comprises at least two unsaturated Carbon atoms. B may comprise a ring system or a polymerisable group.
Abstract:
A method is provided for characterizing fluid flow in a pipe where the fluid includes a drag reducing polymer of a particular type and particular concentration. A computational model is configured to model flow of a fluid in a pipe. The computational model utilizes an empirical parameter for a drag reducing polymer of the particular type and the particular concentration. The computational model can be used to derive information that characterizes the flow of the fluid in the pipe. The empirical parameter for the particular type and the particular concentration of the drag reducing polymer can be identified by solving another computational model that is configured to model turbulent Couette flow in a Couette device for a fluid that includes a drag reducing polymer of the particular type and the particular concentration. The empirical data needed for identification of the empirical parameter are obtained from Couette device experiments.
Abstract:
A wellbore fluid comprises an aqueous carrier liquid, hydrophobic fibers suspended therein, hydrophobic particulate material also suspended in the carrier liquid, and a gas to wet the surfaces of the particles and fibers and bind them together as agglomerates. The wellbore fluid may be a slickwater fracturing fluid and may be used for fracturing a tight gas reservoir. Using a combination of hydrophobic particulate material, hydrophobic fibers and gas inhibits settling out of the particulate material from an aqueous liquid. Because the gas acts to wet the surfaces of both materials and agglomerates them, the particulate material is made to adhere to the fibers; the fibers form a network which hinders settling of the particulate material adhering to them, and the agglomerates contain gas and so have a bulk density which is less than the specific gravity of the solids contained in the agglomerates.