Abstract:
A treatment fluid includes a carrier fluid having a pH less than 6.5, a polysaccharide gelling agent, and a pH modifier which decomposes and/or releases a pH increasing agent under downhole formation conditions to increase the pH of the fluid within the formation, Methods of using the treatment fluid include introducing the treatment fluid in a well bore and allowing the pH modifier to decompose and/or release the pH increasing agent to increase the pH of the wellbore treatment fluid above 7.
Abstract:
An aqueous composition comprising a mineral acid, a fixing agent and water present in an amount sufficient to dissolve the mineral acid and the fixing agent. The fixing agent comprises at least one of an amine and/or an amide containing compound having a dipole moment of at least 3 when in the aqueous composition.
Abstract:
The present disclosure is directed to an apparatus having a separator and mixing equipment. The separator is operable to receive exhaust from fuel-burning equipment at a wellsite and separate the exhaust into a gas component and water. The mixing equipment is operable to receive at least one of the gas component and the water to form a subterranean formation treatment fluid. The present disclosure is further directed to a method of operating fuel-burning equipment at a wellsite to form an exhaust and utilizing the exhaust to form a fluid for injecting into a wellbore to treat a subterranean formation into which the wellbore extends.
Abstract:
A wellbore fluid comprises an aqueous carrier liquid, hydrophobic fibers suspended therein, hydrophobic particulate material also suspended in the carrier liquid, and a gas to wet the surfaces of the particles and fibers and bind them together as agglomerates. The wellbore fluid may be a slickwater fracturing fluid and may be used for fracturing a tight gas reservoir. Using a combination of hydrophobic particulate material, hydrophobic fibers and gas inhibits settling out of the particulate material from an aqueous liquid. Because the gas acts to wet the surfaces of both materials and agglomerates them, the particulate material is made to adhere to the fibers; the fibers form a network which hinders settling of the particulate material adhering to them, and the agglomerates contain gas and so have a bulk density which is less than the specific gravity of the solids contained in the agglomerates.
Abstract:
A method of treating a subterranean formation penetrated by a wellbore includes introducing a treatment fluid comprised at least a crosslinkable component, and a metal crosslinker to the subterranean formation; forming a crosslinked treatment fluid, and de-crosslinking bonds of the crosslinked treatment fluid by manipulating a pH of the treatment fluid with a pH triggering agent.
Abstract:
A wellbore fluid comprises an aqueous carrier liquid, hydrophobic particulate material suspended therein and a gas to wet the surface of the particles and bind them together as agglomerates. The hydrophobic particulate material has a specified maximum particle size and/or minimum surface area: namely a volume median particle size d50 of not more than 200 micron, determined as median diameter of spheres of equivalent volume and/or a surface area of at least 30 m2 per litre (0.03 m2 per milliliter), determined as surface area of smooth spheres of equivalent volume.The agglomeration of the particles by gas leads to the formation of agglomerates which contain gas and so have a bulk density lower than the density of the particles. This reduces the rate of settling. The fluid is particularly envisaged as a slickwater fracturing fluid in which the suspended particles are proppant. We have found that the small particle size and/or substantial surface area increases the amount of gas which can be retained within agglomerates and so enhances the buoyancy of the agglomerates. The end result is that a greater proportion of a hydraulic fracture is propped open.
Abstract:
A method and system for increasing fracture conductivity. A slurry, of a solid particulate freely dispersed in fluid spaces around macrostructures suspended in a carrier fluid, is injected into a fracture, the solid particulate is aggregated in the fracture to form clusters, and the pressure reduced to prop the fracture open on the clusters and form interconnected, hydraulically conductive channels between the clusters. The system comprises a subterranean formation, a treatment slurry stage disposed in a wellbore penetrating the formation, and a pump system to inject the treatment fluid stage into a fracture.
Abstract:
Methods for reducing a viscosity of a viscosified fluid include reacting, such as by depolymerizing and/or decomposing, a polymeric material of the viscosified fluid with a breaking agent including a fully coordinated transition metal compound, such as a strongly complexed fully-coordinated transition metal compound. The methods of treating the subterranean are provided that include reacting, such as by depolymerizing and/or decomposing, a polymeric material of a viscosified treatment fluid with a fully coordinated transition metal compound, such as a strongly complexed fully-coordinated transition metal compound, to facilitate breaking of the viscosified treatment fluid after the fracturing or treatment is finished.
Abstract:
Methods of treating a subterranean formation are disclosed that include placing a treatment fluid into a subterranean formation, the treatment fluid containing a solid agent and one or more polymers capable of consolidating to form a composite polymeric structure at a downhole location.
Abstract:
Methods of treating a subterranean formation are disclosed that include placing a treatment fluid into a subterranean formation, the treatment fluid containing a one or more polymers capable of consolidating to form a polymeric structure at a downhole location. Also disclosed are treatment fluids including a polymeric structure for treating a subterranean formation.