Abstract:
Systems and methods for calculating reservoir characteristics, including well pressure and flow rates are disclosed. Plotting and monitoring a plot of pressure (p) and flow rate (q) as p/q on a y-axis and 1/q on an x-axis can provide insight into well characteristics with zero RMS error.
Abstract:
Flow balancing includes selecting, for each down hole flow control valve of a well, a transformed well performance curve corresponding to a first down hole flow control valve pressure to obtain transformed well performance curves. The well includes a lateral including the down hole flow control valves. Using a constraint set that includes a balancing condition for the lateral, a network optimization analysis is performed on the transformed well performance curves to generate a set of choke positions corresponding to each down hole flow control valve. Network modeling of the well is performed based on the set of choke positions to obtain a second down hole flow control valve pressure for each down hole flow control valve. Using the set of choke positions, a field operation is performed for the well based on the second down hole flow control valve pressure being within a threshold difference of the first down hole flow control valve pressure for each down hole flow control valve.
Abstract:
A technique facilitates selection of optimum flow control valve settings to improve a desired objective function in a multizone well having zonal isolation. A network of flow control valves is provided in a completion network disposed along isolated well zones of at least one lateral bore of the multizone well. Data is acquired from downhole in the multizone well and processed on processor system modules which may be used in selected combinations. Examples of such modules comprise completion network modules, deconvolution modules, optimization modules, and/or inflow-outflow modules. The modules are designed to process the collected data in a manner which facilitates adjustment of the flow control valve settings in the network of flow control valves to improve the desired objective function.
Abstract:
Methods, computing systems, and computer-readable media for displaying information about an item such as a completion. An actual completion in a field includes multiple components. These components may include monitors that monitor various elements of the components (pressure, flow through the component, water cut, etc.) and generate real-time data for those elements. A computing system may display a three-dimensional model of the actual completion and display graphics representing the components. The graphics representing the components may be displayed on the three-dimensional model at locations corresponding to the actual locations of the components within the completion. The computing device may also receive real-time data for the actual components and display alerts on the display when the real-time data triggers alarm conditions.
Abstract:
Methods, computing systems, and computer-readable media for removing fluid from a structure. The system may include sensors disposed within the structure (such as a multi-lateral well) that measure properties of the fluid at the location of the sensors and generate data representing the properties. A computing system receives the data and, using the data, monitors the composition of the fluid at the locations of the sensors. The computing system also displays information about the composition of the fluid at the locations of the sensors. The computing system may, in response to a change in the composition, indicate that the removal process is complete for a particular section and stop the flow for that section.
Abstract:
Flow balancing includes selecting, for each down hole flow control valve of a well, a transformed well performance curve corresponding to a first down hole flow control valve pressure to obtain transformed well performance curves. The well includes a lateral including the down hole flow control valves. Using a constraint set that includes a balancing condition for the lateral, a network optimization analysis is performed on the transformed well performance curves to generate a set of choke positions corresponding to each down hole flow control valve. Network modeling of the well is performed based on the set of choke positions to obtain a second down hole flow control valve pressure for each down hole flow control valve. Using the set of choke positions, a field operation is performed for the well based on the second down hole flow control valve pressure being within a threshold difference of the first down hole flow control valve pressure for each down hole flow control valve.
Abstract:
Systems and methods for calculating reservoir characteristics, including well pressure and flow rates are disclosed. Plotting and monitoring a plot of pressure (p) and flow rate (q) as p/q on a y-axis and 1/q on an x-axis can provide insight into well characteristics with zero RMS error.
Abstract:
Methods, computing systems, and computer-readable media for removing fluid from a structure. The system may include sensors disposed within the structure (such as a multi-lateral well) that measure properties of the fluid at the location of the sensors and generate data representing the properties. A computing system receives the data and, using the data, monitors the composition of the fluid at the locations of the sensors. The computing system also displays information about the composition of the fluid at the locations of the sensors. The computing system may, in response to a change in the composition, indicate that the removal process is complete for a particular section and stop the flow for that section.