Abstract:
A distributed control system based on numerous models of small-scale subsystems within power delivery and/or distribution systems may increase the performance of solvers, automation algorithms, and control systems. By implementing multiple discrete control system models and effectuating simple communications (e.g., requests and responses for additional electric power) between the multiple discrete control system models, the processing power and time associated with modeling the power system and responding to events occurring within the power system may be reduced, and greater flexibility and modularity may be provided to the power delivery and distribution systems.
Abstract:
Computational algorithms or “solvers” may be executed on intelligent electronic devices (IEDs) in an electric power delivery system to perform tasks such as locating and isolating electrical faults and restoring service to an area after an electrical fault occurs. However, executing the solvers may become a computationally prohibitive task, particularly where computing power is limited (e.g., low-power pole-top computers). In certain embodiments, computing power may be offloaded onto multi-instance networks that may enable processing of large amounts of complex data. It may be difficult for the multi-instance networks to obtain real-time or near real-time data from the electric power delivery system due to cybersecurity concerns. As such, multiple stateless services may be used to evaluate limited and/or obfuscated representations of a portion (e.g., a single feeder circuit) of the electric power delivery system.
Abstract:
Disclosed are adaptive communication assisted protection and control. Local intelligent electronic devices (IEDs) associated with local switching devices and having unique IDs may transmit switch status and unique IDs to an area IED. The area IED may calculate topology using switch status, and provide control information to local IEDs using the topology. The area IED may communicate the unique ID of the local IED calculated to be immediately upstream of each local IED and, upon detection of a fault, the local IEDs may send blocking signals that include the received unique ID of the IED immediately upstream therefrom. The area IED may communicate control commands that include the unique IDs and control commands for the local IEDs to take the control action. Upon matching of the unique ID in the control command with its own unique ID, the local IEDs may take the control action and transmit remaining actions.
Abstract:
Disclosed are adaptive communication assisted protection and control. Local intelligent electronic devices (IEDs) associated with local switching devices and having unique IDs may transmit switch status and unique IDs to an area IED. The area IED may calculate topology using switch status, and provide control information to local IEDs using the topology. The area IED may communicate the unique ID of the local IED calculated to be immediately upstream of each local IED and, upon detection of a fault, the local IEDs may send blocking signals that include the received unique ID of the IED immediately upstream therefrom. The area IED may communicate control commands that include the unique IDs and control commands for the local IEDs to take the control action. Upon matching of the unique ID in the control command with its own unique ID, the local IEDs may take the control action and transmit remaining actions.