摘要:
A disaggregation monitor is provided of an electrical power system having an electrical circuit with branches and loads. The disaggregation module includes a memory configured to store instructions and a processing device disposed at the location and in communication with the at least one memory. The processing device upon execution of the instructions is configured to a) iteratively and automatically control or instruct to turn ON one branch set having one or more branches of the plurality of branches at a time while remaining branches of the plurality of branches are turned OFF to isolate the branch set until all branches of the plurality of branches have been included in at least one isolated branch set, b) obtain an electrical signature of each isolated branch set; and c) disaggregate at least one load of the plurality of loads using two or more of the electrical signatures obtained.
摘要:
Provided is an apparatus and method for protecting against unsafe electric current conditions. An example method includes accessing a selected operating mode for a heating element of the electric grill using at least one user input device of the electric grill, the heating element connected to a voltage line and a neutral line; measuring, using a temperature probe, a temperature of the heating element; estimating an ambient temperature at a location within a cook box of the electric grill spaced apart from the heating element, the estimation of the ambient temperature based on the measured temperature of the heating element; and using the estimated ambient temperature to determine when a target temperature corresponding to the selected operating mode is reached.
摘要:
Disclosed is a method for determining the distance to a fault location of a power line to be protected in an electric power system, the method including: configuring the power line to be protected into a plurality of segments, obtaining a plurality of line settings separately for each of the plurality of segments configured, and using the line settings obtained to determine a fault location of the power line to be protected, wherein the line settings include at least one of impedance, resistance, reactance, length, compensation factor, angle. Also disclosed is an intelligent electronic device.
摘要:
The invention relates to an overvoltage protection device with monitoring and communication functions, in particular for the information and process industries, having at least one surge arrester with a self-diagnostics unit and a wireless and/or wired standard interface for data transmission. According to the invention, an additional module is provided to detect the behaviour and/or the properties of a connected electrical energy source, wherein a bidirectional exchange of data and commands to and between a higher-level control system and among multiple overvoltage protection devices takes place and parametrisation of lower-level terminals to be protected can be realised via the standard interface.
摘要:
The device comprises at least a first part intended to detect an electrical fault occurring in a network and a second part comprising at least one switch connecting the network to a power supply source, the first part comprising at least one reflectometry detection system capable of being coupled with the network, the system detecting and analyzing the impedance changes occurring in the network, a signal being sent by the system to trigger the opening of the switch when a detected impedance change is considered by the system to be an electrical fault.
摘要:
The method for controlling selectivity of electric equipment comprises: communication of electric equipment settings between at least one electric equipment unit and a data processing device, computation of the selectivity of electric equipment according to said electric equipment settings, storing and communication of data representative of the selectivity settings and data, supervision of changes of settings and/or of changes of equipment, and checking of the compatibility between new settings after a change and the selectivity computation. The device and installation comprise means for implementing the selectivity control method.
摘要:
A circuit interrupter includes a first terminal structured to electrically connect to a power source, a second terminal structured to electrically connect to a load, separable contacts electrically connected between the first terminal and the second terminal and being moveable between a closed position and an open position, an operating mechanism structured to trip open the separable contacts, an electronic trip unit structured to detect a fault condition based on power flowing between the first and second terminals and to retrieve diagnostic or setting information associated with the circuit interrupter, and a wireless unit structured to provide the setting or diagnostic information associated with the circuit interrupter to an external device via a wireless communication protocol.
摘要:
Disclosed herein is an intelligent switchable device for selectively conducting electricity based on the condition of a branch circuit. The device contains at least one sensor for producing a signal indicative of a condition. The device is capable of transmitting data and communications as well as receiving data, including remote instructions and rules. The device is capable of storing rules for determining whether to render the switch conductive or non-conductive. An optical prong detector is provided to determine whether both the hot and neutral prongs of a plug have been inserted into the receptacle. The receptacle provides conductance upon determination of insertion of a plug into the receptacle. Additional features include GFI detection, current detection, heat detection, warning lights and an audible alarm. The receptacle includes communication abilities with remote devices to transmit data indicative of the state of the device.
摘要:
A detection system of distributed generation islanding based on power frequency carrier, the detection system comprising: a power frequency carrier signal generating device; a power frequency carrier signal detection device; a signal coupling transformer; a substation bus; a distribution power generator (DG); and a safety isolation breaker, wherein the power frequency carrier signal generating device comprises a voltage and current monitor circuit, the power frequency carrier signal generating device is connected with the signal coupling transformer through four three phase four line power cables, and the signal coupling transformer is connected with substation bus through 3 power cables.
摘要:
The invention relates to a base element (ST1, ST2, ST3) for receiving an overvoltage protective module (M1, M2, M3) for use in a bus system, having a first bus connection arrangement (BK1) for contacting a first bus potential (L1), a second bus connection arrangement (BK2) for contacting a second bus potential (L2), a third bus connection arrangement (BK3) for contacting a signal bus (L3), wherein the signal bus in a first state indicates the occurrence of a fault and in a second state indicates the non-occurrence of a fault, wherein a fault indicates a missing or incorrectly received or faulty overvoltage protective module (M1, M2, M3), wherein the first and second bus potential are to be used to supply arrangements on the overvoltage protective module (M1, M2, M3), wherein the base element further comprises an electronic monitoring arrangement (UE1), wherein the electronic monitoring arrangement (UE1) identifies whether an overvoltage protective module (M1, M2, M3) is received, wherein, if an overvoltage protective module (M1, M2, M3) is received in the base element (ST1, ST2, ST3), the second state is signalled via the signal bus, and, if no overvoltage protective module (M1, M2, M3) is received in the base element (ST1, ST2, ST3) or if the overvoltage protective module (M1, M2, M3) is received incorrectly or if the overvoltage protective module (M1, M2, M3) is faulty, the state of the signal bus remains unchanged, wherein the base elements (ST1, ST2, ST3) can be clipped onto a mounting rail (TS1, TS2), and the first bus potential (L1), the second bus potential (L2) and the signal bus (L3) are guided in a recess in the mounting rail (TS1, TS2).