Abstract:
A system of transmitting a plurality of movement parameters of a vehicle. The system includes a supply terminal, a plurality of sensing elements, a modulation circuit, and a return terminal. The supply terminal is coupled to a power source to receive power. The sensing elements receive power from the supply terminal. Each of the sensing elements senses a movement characteristic of the vehicle, and generates movement signals indicative of the sensed movement characteristic. The modulation circuit is coupled to the sensing elements to modulate the movement signals based on the plurality of sensing elements. The return terminal is coupled to the modulation circuit to output the modulated movement signals.
Abstract:
A method of monitoring the operation of a partition movement system having a partition. In an embodiment, the method includes monitoring a parameter having a relation to movement of the partition, generating a first value based on the monitored parameter, and generating a difference value between the first value and a threshold value. The threshold value is indicative of a potential pinch condition. The method also includes determining a position value of the partition corresponding to a relative position of the partition when the difference value is generated, and using at least one of the difference value and the position value to determine a state of the partition movement system.
Abstract:
A ballast. The ballast includes a lamp driver and a controller. The lamp driver is configured to power a gas discharge lamp, and the controller, which includes a non-volatile memory, is configured to control the lamp driver and to save one or more parameters related to operation of the gas discharge lamp in the non-volatile memory.
Abstract:
A method of monitoring the operation of a partition movement system having a partition. In an embodiment, the method includes monitoring a parameter having a relation to movement of the partition, generating a first value based on the monitored parameter, and generating a difference value between the first value and a threshold value. The threshold value is indicative of a potential pinch condition. The method also includes determining a position value of the partition corresponding to a relative position of the partition when the difference value is generated, and using at least one of the difference value and the position value to determine a state of the partition movement system.
Abstract:
A method and system for monitoring a movable partition. In one embodiment, the system includes a sensor linked to a movable partition, a drive system, and a controller. The drive system is configured to move the movable partition. The sensor, which in one embodiment includes a drum connected to the partition by a cable, is independent of the drive system. The sensor transmits a signal indicative of the rotational motion of the drum to the controller, which receives the transmitted signal and calculates at least one of a speed, acceleration, position, and direction of movement of the movable partition.
Abstract:
A method and system for monitoring a movable partition. In one embodiment, the system includes a sensor linked to a movable partition, a drive system, and a controller. The drive system is configured to move the movable partition. The sensor, which in one embodiment includes a drum connected to the partition by a cable, is independent of the drive system. The sensor transmits a signal indicative of the rotational motion of the drum to the controller, which receives the transmitted signal and calculates at least one of a speed, acceleration, position, and direction of movement of the movable partition.
Abstract:
A ballast. The ballast includes a lamp driver and a controller. The lamp driver is configured to power a gas discharge lamp, and the controller includes a non-volatile memory configured to save one or more parameters related to operation of the gas discharge lamp in the non-volatile memory. The controller is further configured to control the lamp driver based on the one or more parameters.
Abstract:
A universal ballast. The ballast includes a power converter, a transformer, a current sensor, and a controller. The power converter is configured to receive an input signal and convert the input signal to a direct current (DC) voltage having a first magnitude. The transformer has a center-tapped primary winding coupled to the power converter and a secondary winding coupled to a lamp. The current sensor is configured to sense a current in the secondary winding. And the controller is configured to receive an indication of the detected current from the current sensor and to determine correct operating parameters for the lamp.
Abstract:
A ballast. The ballast includes a power converter, a transformer, a heater circuit, and a controller. The power converter is configured to receive an input power and convert the input power to a relatively high direct current (DC) voltage. The transformer has a center-tapped primary winding coupled to the power converter and a secondary winding coupled to a lamp. The heater circuit is separate from the transformer and is configured to provide a current to an electrode of the lamp to heat the electrode. The controller is configured to control the heater circuit for providing the current to the electrode.
Abstract:
A system of transmitting a plurality of movement parameters of a vehicle. The system includes a supply terminal, a plurality of sensing elements, a modulation circuit, and a return terminal. The supply terminal is coupled to a power source to receive power. The sensing elements receive power from the supply terminal. Each of the sensing elements senses a movement characteristic of the vehicle, and generates movement signals indicative of the sensed movement characteristic. The modulation circuit is coupled to the sensing elements to modulate the movement signals based on the plurality of sensing elements. The return terminal is coupled to the modulation circuit to output the modulated movement signals