摘要:
A smoking article is provided in which a flavor-generating medium is heated electrically to release an aerosol for inhalation by a consumer. The smoking article includes a heater having resistive heating elements printed on a flexible substrate. The heater can be manufactured by circuit board mass production techniques, and can be formed to fit inside an article of the same shape and size as a conventional cigarette. Alternatively, the heater comprises an array of heating elements onto which charges of flavor-generating medium are deposited. The heating elements are connected in a manner which allows the temperature increase in the heater to be concentrated in individually selected heating elements, and requires a minimal number of electrical conductors.
摘要:
A chemical heat source comprising metal nitride, metal oxide and carbon, particularly useful in smoking articles, and methods of making the heat source are provided. The metal nitride of the heat source has an ignition temperature substantially lower than conventional carbonaceous heat sources, while at the same time provides sufficient heat to release a flavored aerosol from a flavor bed for inhalation by the smoker. Upon combustion the heat source produces virtually no carbon monoxide. The metal nitride is prepared by pre-forming the starting materials into a desired shape, and converting them to metal nitride in situ, without substantially altering the shape of the starting materials.
摘要:
A cylindrical tube is provided of a mechanically strong and flexible electrical conductor such as a metal and has a plurality of separated regions. An electrically insulating layer such as a ceramic is applied on the outer surface except for one exposed portion. Electrically resistive heaters are then applied to the insulated regions and are electrically connected at one end to the underlying electrical conducting region. The electrical conductor is connected to the negative terminal of a power source. The other end of all the heaters are adapted to be connected to the positive terminal of the source. Accordingly, an electrically resistive heating circuit is formed wherein the tube serves as a common for all of the heating elements. The tubular heater can comprise an exposed end hub with a plurality of blades extending therefrom. Each blade can have an individual heater deposited thereon. Alternatively, every other blade can have a heater deposited thereon. The blades having no heater function as barriers to minimize outward escape of generated vapors. These barrier blades also function as heat sinks for the heaters on adjacent blades.
摘要:
An improved carbonaceous heat source suitable for use in a smoking article is provided. The heat source is formed by mixing a carbon component, a catalytic precursor and a binder, forming the mixture into a shape, and supplying heat to the mixture. Upon combustion of the heat source, the catalytic precursor forms a catalyst that converts carbon monoxide produced during combustion of the heat source into a benign substance.
摘要:
A heater having a multiple-layer ceramic substrate and a method for fabricating the heater are provided. The heater consists-of a plurality of ceramic layers which are laminated to form a single ceramic substrate. A plurality of resistive heating elements are deposited onto the multiple-layer ceramic substrate, which are connectable to a power source via conductive elements which extend through the substrate to the resistive heating elements. The heater may also include a terminal that allows for convenient electrical and mechanical interfacing to a smoking article.
摘要:
This invention relates to improved methods for making a composite heat source comprising carbon and metal species. The composite heat source made by the methods of this invention have ignition temperatures that are substantially lower than carbonaceous heat sources, while at the same time provide sufficient heat to release a flavored aerosol from a flavor bed for inhalation by the smoker. Upon combustion, the heat source produces substantially no carbon monoxide. The metal species may be prepared by mixing a metal oxide, metal and a carbon source, pre-forming the metal oxide/metal/carbon source mixture into a shape and converting the mixture to metal species in situ, without substantially altering the original shape of the mixture.
摘要:
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as ≦1% Cr, ≧0.05% Zr ≦2% Ti, ≦2% Mo, ≦1% Ni, ≦0.75% C, ≦0.1% B, ≦1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, ≦1% rare earth metal, and/or ≦3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 &mgr;m. Final stress relief annealing can be carried out in the B2 phase temperature range.
摘要:
The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.
摘要:
The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, ≦1% Cr and either ≧0.05% Zr or Zro2 stringers extending perpendicular to an exposed surface of the heating element or ≧0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, ≦2% Ti, ≦2% Mo, ≦1% Zr, ≦1% C, ≦0.1% B. ≦30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, ≦1% rare earth metal, ≦1% oxygen, ≦3% Cu, balance Fe.
摘要:
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as ≦1% Cr, ≧0.05% Zr ≦2% Ti, ≦2% Mo, ≦1% Ni, ≦0.75% C, ≦0.1% B, ≦1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, ≦1% rare earth metal, and/or ≦3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 &mgr;m. Final stress relief annealing can be carried out in the B2 phase temperature range.