Abstract:
A resonator element includes a quartz crystal substrate having a main surface along a plane including an X-axis and a Z′-axis, and a thickness in a Y′-axis direction. The quartz crystal substrate includes a vibrating portion including a side along the X-axis, a side along the Z′-axis, and a peripheral portion having a thickness smaller than that of the vibrating portion, which is provided along an outer edge of the vibrating portion. The vibrating portion includes a first portion and a second portion having a thickness smaller than that of the first portion, which is provided on at least an outer edge on a +X side of the X-axis and an outer edge on a −X side thereof, among outer edges of the first portion. When Z is a length of the quartz crystal substrate along the Z′-axis, and t is a thickness of the first portion, 11
Abstract:
A quartz crystal resonator includes a quartz crystal resonator element, a thermistor, and a package base having a first principal surface and a second principal surface having an opposed surface relationship with each other, the quartz crystal resonator element is mounted on the first principal surface side, the thermistor is housed in a recessed section of the second principal surface side of the package base, a plurality of electrode terminals connected to the quartz crystal resonator element or the thermistor is disposed on the second principal surface side of the package base, and a distance in a first direction perpendicular to the first principal surface from a mounting surface of the electrode terminals to the thermistor is equal to or longer than 0.05 mm.
Abstract:
A resonator element includes a first region which includes a first portion and a second portion having a thickness thinner than the first portion. In a plan view, the second portion includes an outer frame in two edges present in opposite regions to regions facing the first portion, and a contour of the outer frame is bent more gently than a contour of an edge of the first portion. When R is a length of the outer frame along the X axis, λ is a wavelength of flexural vibration of the quartz crystal substrate, and R/(λ/2)=k, a relation of “0.1
Abstract:
A quartz crystal resonator includes a quartz crystal resonator element, a thermistor, and a package base having a first principal surface and a second principal surface having an opposed surface relationship with each other, the quartz crystal resonator element is mounted on the first principal surface side, the thermistor is housed in a recessed section of the second principal surface side of the package base, a plurality of electrode terminals connected to the quartz crystal resonator element or the thermistor is disposed on the second principal surface side of the package base, and a distance in a first direction perpendicular to the first principal surface from a mounting surface of the electrode terminals to the thermistor is equal to or longer than 0.05 mm.
Abstract:
A vibrating element includes: an element plate that has a vibrating portion that performs thickness-shear vibration, a peripheral portion that is integrally formed with the vibrating portion, and a protruding portion that is provided at the peripheral portion; and an excitation electrode that is provided at the vibrating portion. When a side length of the vibrating portion is Mx, when a side length of the excitation electrode is Ex, and when a wavelength of flexure vibrations of the element plate is λ, the relationship of (Mx−Ex)/2=λ/2, and Mx/2={(A/2)+(¼)}λ (where, A is a positive integer) is satisfied, and when a length of the protruding portion is Dx, and when a distance between the vibrating portion and the protruding portion is Sx, the relationship of Dx=λ/2)×m, and (λ/2)×n−0.1λ≦Sx≦(λ/2)×n+0.1λ (where m and n are positive integers) is satisfied.
Abstract:
A quartz crystal resonator includes a quartz crystal resonator element, a thermistor, and a package base having a first principal surface and a second principal surface having an opposed surface relationship with each other, the quartz crystal resonator element is mounted on the first principal surface side, the thermistor is housed in a recessed section of the second principal surface side of the package base, a plurality of electrode terminals connected to the quartz crystal resonator element or the thermistor is disposed on the second principal surface side of the package base, and a distance in a first direction perpendicular to the first principal surface from a mounting surface of the electrode terminals to the thermistor is equal to or longer than 0.05 mm.
Abstract:
A quartz crystal resonator includes a quartz crystal resonator element, a thermistor, and a package base having a first principal surface and a second principal surface having an opposed surface relationship with each other, the quartz crystal resonator element is mounted on the first principal surface side, the thermistor is housed in a recessed section of the second principal surface side of the package base, a plurality of electrode terminals connected to the quartz crystal resonator element or the thermistor is disposed on the second principal surface side of the package base, and a distance in a first direction perpendicular to the first principal surface from a mounting surface of the electrode terminals to the thermistor is equal to or longer than 0.05 mm.
Abstract:
A resonator includes: a resonator element including a quartz crystal substrate that includes a first area performing a thickness-shear vibration and a second area with a thickness thinner than the first area and located around the first area; and a base substrate to which the second area of the resonator element on one edge side thereof is attached via a bonding material. The quartz crystal substrate has a major surface that is a surface including an X-axis and a Z′-axis, and has a thickness in a direction along a Y′-axis. The resonator satisfies the relation: 1.5×λ≦Xp where Xp is the maximum length of an area of the second area where the bonding material is bonded along the X-axis in a plan view and λ is the wavelength of a flexural vibration occurring in the quartz crystal substrate.
Abstract:
A resonator element includes a quartz crystal substrate in which a plane including X and Z′ axes is set as a main plane and a direction oriented along Y′ axis is a thickness direction. The quartz crystal substrate includes a first region that includes a side along the X axis and a side along the Z′ axis, a second region that has a thickness thinner than the first region. When Mx is a length of the first region along the X axis, Mz is a length of the first region along the Z′ axis, Z is a length of the quartz crystal substrate along the Z′ axis, and lz is a length of the second region along the Z′ axis interposed between the first region and an outer frame of the quartz crystal substrate, relations of 0.9
Abstract:
A quartz crystal resonator includes a quartz crystal resonator element, a thermistor, and a package base having a first principal surface and a second principal surface having an opposed surface relationship with each other, the quartz crystal resonator element is mounted on the first principal surface side, the thermistor is housed in a recessed section of the second principal surface side of the package base, a plurality of electrode terminals connected to the quartz crystal resonator element or the thermistor is disposed on the second principal surface side of the package base, and a distance in a first direction perpendicular to the first principal surface from a mounting surface of the electrode terminals to the thermistor is equal to or longer than 0.05 mm.